_base_ = [ '../_base_/models/van/van_base.py', '../_base_/datasets/imagenet_bs64_swin_224.py', '../_base_/schedules/imagenet_bs1024_adamw_swin.py', '../_base_/default_runtime.py' ] # Note that the mean and variance used here are different from other configs img_norm_cfg = dict( mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='RandomResizedCrop', size=224, backend='pillow', interpolation='bicubic'), dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'), dict( type='RandAugment', policies={{_base_.rand_increasing_policies}}, num_policies=2, total_level=10, magnitude_level=9, magnitude_std=0.5, hparams=dict( pad_val=[round(x) for x in img_norm_cfg['mean'][::-1]], interpolation='bicubic')), dict(type='ColorJitter', brightness=0.4, contrast=0.4, saturation=0.4), dict( type='RandomErasing', erase_prob=0.25, mode='rand', min_area_ratio=0.02, max_area_ratio=1 / 3, fill_color=img_norm_cfg['mean'][::-1], fill_std=img_norm_cfg['std'][::-1]), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='ToTensor', keys=['gt_label']), dict(type='Collect', keys=['img', 'gt_label']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='Resize', size=(248, -1), backend='pillow', interpolation='bicubic'), dict(type='CenterCrop', crop_size=224), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ] data = dict( samples_per_gpu=128, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))