_base_ = [
    '../_base_/models/van/van_small.py',
    '../_base_/datasets/imagenet_bs64_swin_224.py',
    '../_base_/schedules/imagenet_bs1024_adamw_swin.py',
    '../_base_/default_runtime.py'
]

# Note that the mean and variance used here are different from other configs
img_norm_cfg = dict(
    mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='RandomResizedCrop',
        size=224,
        backend='pillow',
        interpolation='bicubic'),
    dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
    dict(
        type='RandAugment',
        policies={{_base_.rand_increasing_policies}},
        num_policies=2,
        total_level=10,
        magnitude_level=9,
        magnitude_std=0.5,
        hparams=dict(
            pad_val=[round(x) for x in img_norm_cfg['mean'][::-1]],
            interpolation='bicubic')),
    dict(type='ColorJitter', brightness=0.4, contrast=0.4, saturation=0.4),
    dict(
        type='RandomErasing',
        erase_prob=0.25,
        mode='rand',
        min_area_ratio=0.02,
        max_area_ratio=1 / 3,
        fill_color=img_norm_cfg['mean'][::-1],
        fill_std=img_norm_cfg['std'][::-1]),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='ImageToTensor', keys=['img']),
    dict(type='ToTensor', keys=['gt_label']),
    dict(type='Collect', keys=['img', 'gt_label'])
]

test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='Resize',
        size=(248, -1),
        backend='pillow',
        interpolation='bicubic'),
    dict(type='CenterCrop', crop_size=224),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='ImageToTensor', keys=['img']),
    dict(type='Collect', keys=['img'])
]

data = dict(
    samples_per_gpu=128,
    train=dict(pipeline=train_pipeline),
    val=dict(pipeline=test_pipeline),
    test=dict(pipeline=test_pipeline))