# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp from collections import OrderedDict import mmcv import torch from mmcv.runner import CheckpointLoader def convert_van(ckpt): new_ckpt = OrderedDict() for k, v in list(ckpt.items()): new_v = v if k.startswith('head'): new_k = k.replace('head.', 'head.fc.') new_ckpt[new_k] = new_v continue elif k.startswith('patch_embed'): if 'proj.' in k: new_k = k.replace('proj.', 'projection.') else: new_k = k elif k.startswith('block'): new_k = k.replace('block', 'blocks') if 'attn.spatial_gating_unit' in new_k: new_k = new_k.replace('conv0', 'DW_conv') new_k = new_k.replace('conv_spatial', 'DW_D_conv') if 'dwconv.dwconv' in new_k: new_k = new_k.replace('dwconv.dwconv', 'dwconv') else: new_k = k if not new_k.startswith('head'): new_k = 'backbone.' + new_k new_ckpt[new_k] = new_v return new_ckpt def main(): parser = argparse.ArgumentParser( description='Convert keys in pretrained van models to mmcls style.') parser.add_argument('src', help='src model path or url') # The dst path must be a full path of the new checkpoint. parser.add_argument('dst', help='save path') args = parser.parse_args() checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') if 'state_dict' in checkpoint: state_dict = checkpoint['state_dict'] else: state_dict = checkpoint weight = convert_van(state_dict) mmcv.mkdir_or_exist(osp.dirname(args.dst)) torch.save(weight, args.dst) print('Done!!') if __name__ == '__main__': main()