# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp from collections import OrderedDict import mmcv import torch from mmcv.runner import CheckpointLoader def convert_twins(args, ckpt): new_ckpt = OrderedDict() for k, v in list(ckpt.items()): new_v = v if k.startswith('head'): new_k = k.replace('head.', 'head.fc.') new_ckpt[new_k] = new_v continue elif k.startswith('patch_embeds'): if 'proj.' in k: new_k = k.replace('proj.', 'projection.') else: new_k = k elif k.startswith('blocks'): k = k.replace('blocks', 'stages') # Union if 'mlp.fc1' in k: new_k = k.replace('mlp.fc1', 'ffn.layers.0.0') elif 'mlp.fc2' in k: new_k = k.replace('mlp.fc2', 'ffn.layers.1') else: new_k = k new_k = new_k.replace('blocks.', 'layers.') elif k.startswith('pos_block'): new_k = k.replace('pos_block', 'position_encodings') if 'proj.0.' in new_k: new_k = new_k.replace('proj.0.', 'proj.') elif k.startswith('norm'): new_k = k.replace('norm', 'norm_after_stage3') else: new_k = k new_k = 'backbone.' + new_k new_ckpt[new_k] = new_v return new_ckpt def main(): parser = argparse.ArgumentParser( description='Convert keys in timm pretrained vit models to ' 'MMPretrain style.') parser.add_argument('src', help='src model path or url') # The dst path must be a full path of the new checkpoint. parser.add_argument('dst', help='save path') args = parser.parse_args() checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') if 'state_dict' in checkpoint: # timm checkpoint state_dict = checkpoint['state_dict'] else: state_dict = checkpoint weight = convert_twins(args, state_dict) mmcv.mkdir_or_exist(osp.dirname(args.dst)) torch.save(weight, args.dst) if __name__ == '__main__': main()