Collections: - Name: MoCoV3 Metadata: Training Data: ImageNet-1k Training Techniques: - LARS Training Resources: 32x V100 GPUs Architecture: - ResNet - ViT - MoCo Paper: Title: An Empirical Study of Training Self-Supervised Vision Transformers URL: https://arxiv.org/abs/2104.02057 README: configs/mocov3/README.md Models: - Name: mocov3_resnet50_8xb512-amp-coslr-100e_in1k Metadata: Epochs: 100 Batch Size: 4096 FLOPs: 4109364224 Parameters: 68012160 Training Data: ImageNet-1k In Collection: MoCoV3 Results: null Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/mocov3_resnet50_8xb512-amp-coslr-100e_in1k_20220927-f1144efa.pth Config: configs/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k.py Downstream: - resnet50_mocov3-100e-pre_8xb128-linear-coslr-90e_in1k - Name: mocov3_resnet50_8xb512-amp-coslr-300e_in1k Metadata: Epochs: 300 Batch Size: 4096 FLOPs: 4109364224 Parameters: 68012160 Training Data: ImageNet-1k In Collection: MoCoV3 Results: null Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/mocov3_resnet50_8xb512-amp-coslr-300e_in1k_20220927-1e4f3304.pth Config: configs/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k.py Downstream: - resnet50_mocov3-300e-pre_8xb128-linear-coslr-90e_in1k - Name: mocov3_resnet50_8xb512-amp-coslr-800e_in1k Metadata: Epochs: 800 Batch Size: 4096 FLOPs: 4109364224 Parameters: 68012160 Training Data: ImageNet-1k In Collection: MoCoV3 Results: null Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/mocov3_resnet50_8xb512-amp-coslr-800e_in1k_20220927-e043f51a.pth Config: configs/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k.py Downstream: - resnet50_mocov3-800e-pre_8xb128-linear-coslr-90e_in1k - Name: resnet50_mocov3-100e-pre_8xb128-linear-coslr-90e_in1k Metadata: Epochs: 90 Batch Size: 1024 FLOPs: 4109464576 Parameters: 25557032 Training Data: ImageNet-1k In Collection: MoCoV3 Results: - Task: Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 69.6 Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-8f7d937e.pth Config: configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py - Name: resnet50_mocov3-300e-pre_8xb128-linear-coslr-90e_in1k Metadata: Epochs: 90 Batch Size: 1024 FLOPs: 4109464576 Parameters: 25557032 Training Data: ImageNet-1k In Collection: MoCoV3 Results: - Task: Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 72.8 Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-d21ddac2.pth Config: configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py - Name: resnet50_mocov3-800e-pre_8xb128-linear-coslr-90e_in1k Metadata: Epochs: 90 Batch Size: 1024 FLOPs: 4109464576 Parameters: 25557032 Training Data: ImageNet-1k In Collection: MoCoV3 Results: - Task: Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 74.4 Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-0e97a483.pth Config: configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py - Name: mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k Metadata: Epochs: 300 Batch Size: 4096 FLOPs: 4607954304 Parameters: 84266752 Training Data: ImageNet-1k In Collection: MoCoV3 Results: null Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k-224_20220826-08bc52f7.pth Config: configs/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k.py Downstream: - vit-small-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k - Name: vit-small-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k Metadata: Epochs: 90 Batch Size: 1024 FLOPs: 4607954304 Parameters: 22050664 Training Data: ImageNet-1k In Collection: MoCoV3 Results: - Task: Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 73.6 Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/vit-small-p16_linear-8xb128-coslr-90e_in1k/vit-small-p16_linear-8xb128-coslr-90e_in1k_20220826-376674ef.pth Config: configs/mocov3/benchmarks/vit-small-p16_8xb128-linear-coslr-90e_in1k.py - Name: mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k Metadata: Epochs: 300 Batch Size: 4096 FLOPs: 17581972224 Parameters: 215678464 Training Data: ImageNet-1k In Collection: MoCoV3 Results: null Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k-224_20220826-25213343.pth Config: configs/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k.py Downstream: - vit-base-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k - vit-base-p16_mocov3-pre_8xb64-coslr-150e_in1k - Name: vit-base-p16_mocov3-pre_8xb64-coslr-150e_in1k Metadata: Epochs: 150 Batch Size: 512 FLOPs: 17581972224 Parameters: 86567656 Training Data: ImageNet-1k In Collection: MoCoV3 Results: - Task: Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 83.0 Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb64-coslr-150e_in1k/vit-base-p16_ft-8xb64-coslr-150e_in1k_20220826-f1e6c442.pth Config: configs/mocov3/benchmarks/vit-base-p16_8xb64-coslr-150e_in1k.py - Name: vit-base-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k Metadata: Epochs: 90 Batch Size: 1024 FLOPs: 17581972224 Parameters: 86567656 Training Data: ImageNet-1k In Collection: MoCoV3 Results: - Task: Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 76.9 Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k_20220826-83be7758.pth Config: configs/mocov3/benchmarks/vit-base-p16_8xb128-linear-coslr-90e_in1k.py - Name: mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k Metadata: Epochs: 300 Batch Size: 4096 FLOPs: 61603111936 Parameters: 652781568 Training Data: ImageNet-1k In Collection: MoCoV3 Results: null Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k-224_20220829-9b88a442.pth Config: configs/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k.py Downstream: - vit-large-p16_mocov3-pre_8xb64-coslr-100e_in1k - Name: vit-large-p16_mocov3-pre_8xb64-coslr-100e_in1k Metadata: Epochs: 100 Batch Size: 512 FLOPs: 61603111936 Parameters: 304326632 Training Data: ImageNet-1k In Collection: MoCoV3 Results: - Task: Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 83.7 Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/vit-large-p16_ft-8xb64-coslr-100e_in1k/vit-large-p16_ft-8xb64-coslr-100e_in1k_20220829-878a2f7f.pth Config: configs/mocov3/benchmarks/vit-large-p16_8xb64-coslr-100e_in1k.py