_base_ = [ '../_base_/datasets/refcoco.py', '../_base_/default_runtime.py', ] # model settings model = dict( type='OFA', task='refcoco', vocab_size=59457, embedding_dim=768, encoder_cfg=dict( embed_images=dict(type='OFAResNet', depth=101), num_layers=6, ), decoder_cfg=dict(num_layers=6), generation_cfg=dict(use_cache=True), tokenizer=dict(type='OFATokenizer', name_or_path='OFA-Sys/OFA-base'), ) # data settings data_preprocessor = dict( type='MultiModalDataPreprocessor', mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True, ) test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(512, 512)), dict( type='PackInputs', algorithm_keys=['text', 'gt_bboxes'], meta_keys=['image_id', 'scale_factor'], ), ] train_dataloader = None test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) # schedule settings train_cfg = None val_cfg = dict() test_cfg = dict()