# Pytorch to TorchScript (Experimental) - [Pytorch to TorchScript (Experimental)](#pytorch-to-torchscript-experimental) - [How to convert models from Pytorch to TorchScript](#how-to-convert-models-from-pytorch-to-torchscript) - [Usage](#usage) - [Description of all arguments](#description-of-all-arguments) - [Reminders](#reminders) - [FAQs](#faqs) ## How to convert models from Pytorch to TorchScript ### Usage ```bash python tools/deployment/pytorch2torchscript.py \ ${CONFIG_FILE} \ --checkpoint ${CHECKPOINT_FILE} \ --output-file ${OUTPUT_FILE} \ --shape ${IMAGE_SHAPE} \ --verify \ ``` ### Description of all arguments - `config` : The path of a model config file. - `--checkpoint` : The path of a model checkpoint file. - `--output-file`: The path of output TorchScript model. If not specified, it will be set to `tmp.pt`. - `--shape`: The height and width of input tensor to the model. If not specified, it will be set to `224 224`. - `--verify`: Determines whether to verify the correctness of an exported model. If not specified, it will be set to `False`. Example: ```bash python tools/deployment/pytorch2onnx.py \ configs/resnet/resnet18_8xb16_cifar10.py \ --checkpoint checkpoints/resnet/resnet18_8xb16_cifar10.pth \ --output-file checkpoints/resnet/resnet18_8xb16_cifar10.pt \ --verify \ ``` Notes: - *All models are tested with Pytorch==1.8.1* ## Reminders - For torch.jit.is_tracing() is only supported after v1.6. For users with pytorch v1.3-v1.5, we suggest early returning tensors manually. - If you meet any problem with the models in this repo, please create an issue and it would be taken care of soon. ## FAQs - None