_base_ = [ '../_base_/datasets/imagenet_bs64_swin_384.py', '../_base_/schedules/imagenet_bs4096_AdamW.py', '../_base_/default_runtime.py' ] # model settings model = dict( type='ImageClassifier', backbone=dict( type='VisionTransformer', arch='deit-base', img_size=384, patch_size=16, ), neck=None, head=dict( type='VisionTransformerClsHead', num_classes=1000, in_channels=768, loss=dict( type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'), ), # Change to the path of the pretrained model # init_cfg=dict(type='Pretrained', checkpoint=''), ) # dataset settings train_dataloader = dict(batch_size=32) # schedule settings optim_wrapper = dict(clip_grad=dict(max_norm=1.0)) # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. # base_batch_size = (16 GPUs) x (32 samples per GPU) auto_scale_lr = dict(base_batch_size=512)