_base_ = [ '../_base_/models/deit3/deit3-base-p16-384.py', '../_base_/datasets/imagenet_bs64_deit3_384.py', '../_base_/schedules/imagenet_bs4096_AdamW.py', '../_base_/default_runtime.py' ] # dataset setting train_dataloader = dict(batch_size=32) # schedule settings optim_wrapper = dict(optimizer=dict(lr=1e-5, weight_decay=0.1)) # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. # base_batch_size = (64 GPUs) x (32 samples per GPU) auto_scale_lr = dict(base_batch_size=2048)