_base_ = [ 'efficientnetv2-s_8xb32_in1k-384px.py', ] # model setting model = dict(backbone=dict(arch='xl'), ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='EfficientNetRandomCrop', scale=384, crop_padding=0), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='PackInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='EfficientNetCenterCrop', crop_size=512, crop_padding=0), dict(type='PackInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline))