_base_ = [ '../_base_/models/swin_transformer/large_384.py', '../_base_/datasets/cub_bs8_384.py', '../_base_/schedules/cub_bs64.py', '../_base_/default_runtime.py', ] # model settings checkpoint = 'https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin-large_3rdparty_in21k-384px.pth' # noqa model = dict( type='ImageClassifier', backbone=dict( init_cfg=dict( type='Pretrained', checkpoint=checkpoint, prefix='backbone')), head=dict(num_classes=200, )) # schedule settings optim_wrapper = dict( optimizer=dict( _delete_=True, type='AdamW', lr=5e-6, weight_decay=0.0005, eps=1e-8, betas=(0.9, 0.999)), paramwise_cfg=dict( norm_decay_mult=0.0, bias_decay_mult=0.0, custom_keys={ '.absolute_pos_embed': dict(decay_mult=0.0), '.relative_position_bias_table': dict(decay_mult=0.0) }), clip_grad=dict(max_norm=5.0), ) default_hooks = dict( # log every 20 intervals logger=dict(type='LoggerHook', interval=20), # save last three checkpoints checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))