_base_ = [ '../_base_/models/t2t-vit-t-14.py', '../_base_/datasets/imagenet_bs64_t2t_224.py', '../_base_/default_runtime.py', ] # schedule settings optim_wrapper = dict( optimizer=dict(type='AdamW', lr=5e-4, weight_decay=0.05), paramwise_cfg=dict( norm_decay_mult=0.0, bias_decay_mult=0.0, custom_keys={'cls_token': dict(decay_mult=0.0)}, ), ) param_scheduler = [ # warm up learning rate scheduler dict( type='LinearLR', start_factor=1e-6, by_epoch=True, begin=0, end=10, # update by iter convert_to_iter_based=True), # main learning rate scheduler dict( type='CosineAnnealingLR', T_max=290, eta_min=1e-5, by_epoch=True, begin=10, end=300), # cool down learning rate scheduler dict(type='ConstantLR', factor=0.1, by_epoch=True, begin=300, end=310), ] train_cfg = dict(by_epoch=True, max_epochs=310, val_interval=1) val_cfg = dict() test_cfg = dict() # runtime settings custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')] # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. # base_batch_size = (8 GPUs) x (64 samples per GPU) auto_scale_lr = dict(base_batch_size=512)