_base_ = [ '../_base_/datasets/imagenet_bs64_pil_resize.py', '../_base_/schedules/imagenet_bs4096_AdamW.py', '../_base_/default_runtime.py' ] # model setting model = dict( type='ImageClassifier', backbone=dict( type='LoRAModel', module=dict( type='VisionTransformer', arch='b', img_size=384, patch_size=16, drop_rate=0.1, init_cfg=dict(type='Pretrained', checkpoint='', prefix='backbone')), alpha=16, rank=16, drop_rate=0.1, targets=[dict(type='qkv')]), neck=None, head=dict( type='VisionTransformerClsHead', num_classes=1000, in_channels=768, loss=dict( type='LabelSmoothLoss', label_smooth_val=0.1, mode='classy_vision'), init_cfg=[dict(type='TruncNormal', layer='Linear', std=2e-5)], )) # dataset setting data_preprocessor = dict( mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], # convert image from BGR to RGB to_rgb=True, ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='RandomResizedCrop', scale=384, backend='pillow'), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='PackInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='ResizeEdge', scale=384, edge='short', backend='pillow'), dict(type='CenterCrop', crop_size=384), dict(type='PackInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) param_scheduler = [ dict( type='LinearLR', start_factor=1e-4, by_epoch=True, begin=0, end=5, convert_to_iter_based=True), dict( type='CosineAnnealingLR', T_max=45, by_epoch=True, begin=5, end=50, eta_min=1e-6, convert_to_iter_based=True) ] train_cfg = dict(by_epoch=True, max_epochs=50) default_hooks = dict( # save checkpoint per epoch. checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3)) # schedule setting optim_wrapper = dict(clip_grad=dict(max_norm=1.0))