# Copyright (c) OpenMMLab. All rights reserved. import copy from unittest import TestCase import numpy as np import torch from mmcls.evaluation.metrics import Accuracy, SingleLabelMetric from mmcls.registry import METRICS from mmcls.structures import ClsDataSample class TestAccuracy(TestCase): def test_evaluate(self): """Test using the metric in the same way as Evalutor.""" pred = [ ClsDataSample().set_pred_score(i).set_pred_label(j).set_gt_label( k).to_dict() for i, j, k in zip([ torch.tensor([0.7, 0.0, 0.3]), torch.tensor([0.5, 0.2, 0.3]), torch.tensor([0.4, 0.5, 0.1]), torch.tensor([0.0, 0.0, 1.0]), torch.tensor([0.0, 0.0, 1.0]), torch.tensor([0.0, 0.0, 1.0]), ], [0, 0, 1, 2, 2, 2], [0, 0, 1, 2, 1, 0]) ] # Test with score (use score instead of label if score exists) metric = METRICS.build(dict(type='Accuracy', thrs=0.6)) metric.process(None, pred) acc = metric.evaluate(6) self.assertIsInstance(acc, dict) self.assertAlmostEqual(acc['accuracy/top1'], 2 / 6 * 100, places=4) # Test with multiple thrs metric = METRICS.build(dict(type='Accuracy', thrs=(0., 0.6, None))) metric.process(None, pred) acc = metric.evaluate(6) self.assertSetEqual( set(acc.keys()), { 'accuracy/top1_thr-0.00', 'accuracy/top1_thr-0.60', 'accuracy/top1_no-thr' }) # Test with invalid topk with self.assertRaisesRegex(ValueError, 'check the `val_evaluator`'): metric = METRICS.build(dict(type='Accuracy', topk=(1, 5))) metric.process(None, pred) metric.evaluate(6) # Test with label for sample in pred: del sample['pred_label']['score'] metric = METRICS.build(dict(type='Accuracy', thrs=(0., 0.6, None))) metric.process(None, pred) acc = metric.evaluate(6) self.assertIsInstance(acc, dict) self.assertAlmostEqual(acc['accuracy/top1'], 4 / 6 * 100, places=4) # Test initialization metric = METRICS.build(dict(type='Accuracy', thrs=0.6)) self.assertTupleEqual(metric.thrs, (0.6, )) metric = METRICS.build(dict(type='Accuracy', thrs=[0.6])) self.assertTupleEqual(metric.thrs, (0.6, )) metric = METRICS.build(dict(type='Accuracy', topk=5)) self.assertTupleEqual(metric.topk, (5, )) metric = METRICS.build(dict(type='Accuracy', topk=[5])) self.assertTupleEqual(metric.topk, (5, )) def test_calculate(self): """Test using the metric from static method.""" # Test with score y_true = np.array([0, 0, 1, 2, 1, 0]) y_label = torch.tensor([0, 0, 1, 2, 2, 2]) y_score = [ [0.7, 0.0, 0.3], [0.5, 0.2, 0.3], [0.4, 0.5, 0.1], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], ] # Test with score acc = Accuracy.calculate(y_score, y_true, thrs=(0.6, )) self.assertIsInstance(acc, list) self.assertIsInstance(acc[0], list) self.assertIsInstance(acc[0][0], torch.Tensor) self.assertTensorEqual(acc[0][0], 2 / 6 * 100) # Test with label acc = Accuracy.calculate(y_label, y_true, thrs=(0.6, )) self.assertIsInstance(acc, torch.Tensor) # the thrs will be ignored self.assertTensorEqual(acc, 4 / 6 * 100) # Test with invalid inputs with self.assertRaisesRegex(TypeError, " is not"): Accuracy.calculate(y_label, 'hi') # Test with invalid topk with self.assertRaisesRegex(ValueError, 'Top-5 accuracy .* is 3'): Accuracy.calculate(y_score, y_true, topk=(1, 5)) def assertTensorEqual(self, tensor: torch.Tensor, value: float, msg=None, **kwarg): tensor = tensor.to(torch.float32) value = torch.FloatTensor([value]) try: torch.testing.assert_allclose(tensor, value, **kwarg) except AssertionError as e: self.fail(self._formatMessage(msg, str(e))) class TestSingleLabel(TestCase): def test_evaluate(self): """Test using the metric in the same way as Evalutor.""" pred = [ ClsDataSample().set_pred_score(i).set_pred_label(j).set_gt_label( k).to_dict() for i, j, k in zip([ torch.tensor([0.7, 0.0, 0.3]), torch.tensor([0.5, 0.2, 0.3]), torch.tensor([0.4, 0.5, 0.1]), torch.tensor([0.0, 0.0, 1.0]), torch.tensor([0.0, 0.0, 1.0]), torch.tensor([0.0, 0.0, 1.0]), ], [0, 0, 1, 2, 2, 2], [0, 0, 1, 2, 1, 0]) ] # Test with score (use score instead of label if score exists) metric = METRICS.build( dict( type='SingleLabelMetric', thrs=0.6, items=('precision', 'recall', 'f1-score', 'support'))) metric.process(None, pred) res = metric.evaluate(6) self.assertIsInstance(res, dict) self.assertAlmostEqual( res['single-label/precision'], (1 + 0 + 1 / 3) / 3 * 100, places=4) self.assertAlmostEqual( res['single-label/recall'], (1 / 3 + 0 + 1) / 3 * 100, places=4) self.assertAlmostEqual( res['single-label/f1-score'], (1 / 2 + 0 + 1 / 2) / 3 * 100, places=4) self.assertEqual(res['single-label/support'], 6) # Test with multiple thrs metric = METRICS.build( dict(type='SingleLabelMetric', thrs=(0., 0.6, None))) metric.process(None, pred) res = metric.evaluate(6) self.assertSetEqual( set(res.keys()), { 'single-label/precision_thr-0.00', 'single-label/recall_thr-0.00', 'single-label/f1-score_thr-0.00', 'single-label/precision_thr-0.60', 'single-label/recall_thr-0.60', 'single-label/f1-score_thr-0.60', 'single-label/precision_no-thr', 'single-label/recall_no-thr', 'single-label/f1-score_no-thr' }) # Test with average mode "micro" metric = METRICS.build( dict( type='SingleLabelMetric', average='micro', items=('precision', 'recall', 'f1-score', 'support'))) metric.process(None, pred) res = metric.evaluate(6) self.assertIsInstance(res, dict) self.assertAlmostEqual( res['single-label/precision_micro'], 66.666, places=2) self.assertAlmostEqual( res['single-label/recall_micro'], 66.666, places=2) self.assertAlmostEqual( res['single-label/f1-score_micro'], 66.666, places=2) self.assertEqual(res['single-label/support_micro'], 6) # Test with average mode None metric = METRICS.build( dict( type='SingleLabelMetric', average=None, items=('precision', 'recall', 'f1-score', 'support'))) metric.process(None, pred) res = metric.evaluate(6) self.assertIsInstance(res, dict) precision = res['single-label/precision_classwise'] self.assertAlmostEqual(precision[0], 100., places=4) self.assertAlmostEqual(precision[1], 100., places=4) self.assertAlmostEqual(precision[2], 1 / 3 * 100, places=4) recall = res['single-label/recall_classwise'] self.assertAlmostEqual(recall[0], 2 / 3 * 100, places=4) self.assertAlmostEqual(recall[1], 50., places=4) self.assertAlmostEqual(recall[2], 100., places=4) f1_score = res['single-label/f1-score_classwise'] self.assertAlmostEqual(f1_score[0], 80., places=4) self.assertAlmostEqual(f1_score[1], 2 / 3 * 100, places=4) self.assertAlmostEqual(f1_score[2], 50., places=4) self.assertEqual(res['single-label/support_classwise'], [3, 2, 1]) # Test with label, the thrs will be ignored pred_no_score = copy.deepcopy(pred) for sample in pred_no_score: del sample['pred_label']['score'] metric = METRICS.build(dict(type='SingleLabelMetric', thrs=(0., 0.6))) metric.process(None, pred_no_score) res = metric.evaluate(6) self.assertIsInstance(res, dict) # Expected values come from sklearn self.assertAlmostEqual(res['single-label/precision'], 77.777, places=2) self.assertAlmostEqual(res['single-label/recall'], 72.222, places=2) self.assertAlmostEqual(res['single-label/f1-score'], 65.555, places=2) pred_no_num_classes = copy.deepcopy(pred_no_score) for sample in pred_no_num_classes: del sample['pred_label']['num_classes'] with self.assertRaisesRegex(ValueError, 'neither `score` nor'): metric.process(None, pred_no_num_classes) # Test with empty items metric = METRICS.build(dict(type='SingleLabelMetric', items=tuple())) metric.process(None, pred) res = metric.evaluate(6) self.assertIsInstance(res, dict) self.assertEqual(len(res), 0) metric.process(None, pred_no_score) res = metric.evaluate(6) self.assertIsInstance(res, dict) self.assertEqual(len(res), 0) # Test initialization metric = METRICS.build(dict(type='SingleLabelMetric', thrs=0.6)) self.assertTupleEqual(metric.thrs, (0.6, )) metric = METRICS.build(dict(type='SingleLabelMetric', thrs=[0.6])) self.assertTupleEqual(metric.thrs, (0.6, )) def test_calculate(self): """Test using the metric from static method.""" # Test with score y_true = np.array([0, 0, 1, 2, 1, 0]) y_label = torch.tensor([0, 0, 1, 2, 2, 2]) y_score = [ [0.7, 0.0, 0.3], [0.5, 0.2, 0.3], [0.4, 0.5, 0.1], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], ] # Test with score res = SingleLabelMetric.calculate(y_score, y_true, thrs=(0.6, )) self.assertIsInstance(res, list) self.assertIsInstance(res[0], tuple) precision, recall, f1_score, support = res[0] self.assertTensorEqual(precision, (1 + 0 + 1 / 3) / 3 * 100) self.assertTensorEqual(recall, (1 / 3 + 0 + 1) / 3 * 100) self.assertTensorEqual(f1_score, (1 / 2 + 0 + 1 / 2) / 3 * 100) self.assertTensorEqual(support, 6) # Test with label res = SingleLabelMetric.calculate(y_label, y_true, num_classes=3) self.assertIsInstance(res, tuple) precision, recall, f1_score, support = res # Expected values come from sklearn self.assertTensorEqual(precision, 77.7777) self.assertTensorEqual(recall, 72.2222) self.assertTensorEqual(f1_score, 65.5555) self.assertTensorEqual(support, 6) # Test with invalid inputs with self.assertRaisesRegex(TypeError, " is not"): SingleLabelMetric.calculate(y_label, 'hi') def assertTensorEqual(self, tensor: torch.Tensor, value: float, msg=None, **kwarg): tensor = tensor.to(torch.float32) value = torch.tensor(value).float() try: torch.testing.assert_allclose(tensor, value, **kwarg) except AssertionError as e: self.fail(self._formatMessage(msg, str(e)))