_base_ = [ '../_base_/default_runtime.py', ] # model settings model = dict( type='Flamingo', tokenizer=dict( type='LlamaTokenizer', name_or_path='decapoda-research/llama-7b-hf'), vision_encoder=dict( type='VisionTransformer', arch='l', patch_size=14, pre_norm=True, norm_cfg=dict(type='LN', eps=1e-5), layer_cfgs=dict(act_cfg=dict(type='QuickGELU')), final_norm=False, out_type='raw', pretrained=( 'https://download.openmmlab.com/mmclassification/v0/clip/' 'vit-large-p14_clip-openai-pre_3rdparty_20230517-95e2af0b.pth'), ), lang_encoder=dict( base=dict( type='AutoModelForCausalLM', name_or_path='decapoda-research/llama-7b-hf', local_files_only=True), adapter=dict( type='FlamingoLMAdapter', vis_hidden_size=1024, cross_attn_every_n_layers=4, use_media_placement_augmentation=False), ), task='caption', shot_prompt_tmpl='Output:{caption}<|endofchunk|>', final_prompt_tmpl='Output:', generation_cfg=dict(num_beams=3, max_new_tokens=20, length_penalty=-2.0)) # data settings data_preprocessor = dict( mean=[122.770938, 116.7460125, 104.09373615], std=[68.5005327, 66.6321579, 70.32316305], to_rgb=True, ) test_pipeline = [ dict( type='ApplyToList', # Flamingo requires to load multiple images during few-shot inference. scatter_key='img_path', transforms=[ dict(type='LoadImageFromFile'), dict( type='ResizeEdge', scale=224, interpolation='bicubic', backend='pillow'), dict(type='CenterCrop', crop_size=(224, 224)), ], collate_keys=['img', 'scale_factor', 'ori_shape'], ), dict( type='PackInputs', algorithm_keys=['gt_caption', 'shots'], meta_keys=['image_id']), ] val_dataloader = dict( batch_size=8, num_workers=8, dataset=dict( type='FlamingoEvalCOCOCaption', data_root='data/coco', ann_file='annotations/captions_train2014.json', data_prefix=dict(img_path='train2014'), pipeline=test_pipeline, num_shots=2, num_support_examples=2048, num_query_examples=5000, ), sampler=dict(type='DefaultSampler', shuffle=False), persistent_workers=True, ) val_evaluator = dict( type='COCOCaption', ann_file='data/coco/annotations/captions_train2014.json') # If you want standard test, please manually configure the test dataset test_dataloader = val_dataloader test_evaluator = val_evaluator # schedule settings val_cfg = dict() test_cfg = dict()