_base_ = [ '../_base_/models/mae_vit-base-p16.py', '../_base_/datasets/imagenet_bs512_mae.py', '../_base_/default_runtime.py', ] # optimizer wrapper optim_wrapper = dict( type='AmpOptimWrapper', loss_scale='dynamic', optimizer=dict( type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05), paramwise_cfg=dict( custom_keys={ 'ln': dict(decay_mult=0.0), 'bias': dict(decay_mult=0.0), 'pos_embed': dict(decay_mult=0.), 'mask_token': dict(decay_mult=0.), 'cls_token': dict(decay_mult=0.) })) # learning rate scheduler param_scheduler = [ dict( type='LinearLR', start_factor=0.000000001, by_epoch=True, begin=0, end=40, convert_to_iter_based=True), dict( type='CosineAnnealingLR', T_max=760, by_epoch=True, begin=40, end=800, convert_to_iter_based=True) ] # runtime settings train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=800) default_hooks = dict( # only keeps the latest 3 checkpoints checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3)) randomness = dict(seed=0, diff_rank_seed=True) # auto resume resume = True # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. auto_scale_lr = dict(base_batch_size=4096)