_base_ = [ '../_base_/models/repvgg-B3_lbs-mixup_in1k.py', '../_base_/datasets/imagenet_bs32_pil_resize.py', '../_base_/schedules/imagenet_bs256_coslr.py', '../_base_/default_runtime.py' ] # schedule settings optim_wrapper = dict( paramwise_cfg=dict( bias_decay_mult=0.0, custom_keys={ 'branch_3x3.norm': dict(decay_mult=0.0), 'branch_1x1.norm': dict(decay_mult=0.0), 'branch_norm.bias': dict(decay_mult=0.0), })) data_preprocessor = dict( # RGB format normalization parameters mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], # convert image from BGR to RGB to_rgb=True, ) bgr_mean = data_preprocessor['mean'][::-1] bgr_std = data_preprocessor['std'][::-1] train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='RandomResizedCrop', scale=224, backend='pillow'), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict( type='RandAugment', policies='timm_increasing', num_policies=2, total_level=10, magnitude_level=7, magnitude_std=0.5, hparams=dict(pad_val=[round(x) for x in bgr_mean])), dict(type='PackInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='ResizeEdge', scale=256, edge='short', backend='pillow'), dict(type='CenterCrop', crop_size=224), dict(type='PackInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) # schedule settings param_scheduler = dict( type='CosineAnnealingLR', T_max=200, by_epoch=True, begin=0, end=200, convert_to_iter_based=True) train_cfg = dict(by_epoch=True, max_epochs=200) default_hooks = dict( checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))