_base_ = [ '../_base_/datasets/imagenet_bs32_mocov2.py', '../_base_/schedules/imagenet_sgd_coslr_200e.py', '../_base_/default_runtime.py', ] # model settings model = dict( type='SimSiam', backbone=dict( type='ResNet', depth=50, norm_cfg=dict(type='SyncBN'), zero_init_residual=True), neck=dict( type='NonLinearNeck', in_channels=2048, hid_channels=2048, out_channels=2048, num_layers=3, with_last_bn_affine=False, with_avg_pool=True), head=dict( type='LatentPredictHead', loss=dict(type='CosineSimilarityLoss'), predictor=dict( type='NonLinearNeck', in_channels=2048, hid_channels=512, out_channels=2048, with_avg_pool=False, with_last_bn=False, with_last_bias=True)), ) # optimizer # set base learning rate lr = 0.05 optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=lr, weight_decay=1e-4, momentum=0.9), paramwise_cfg=dict(custom_keys={'predictor': dict(fix_lr=True)})) # learning rate scheduler param_scheduler = [ dict(type='CosineAnnealingLR', T_max=100, by_epoch=True, begin=0, end=100) ] # runtime settings train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=100) default_hooks = dict( # only keeps the latest 3 checkpoints checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3)) # additional hooks custom_hooks = [ dict(type='SimSiamHook', priority='HIGH', fix_pred_lr=True, lr=lr) ]