_base_ = [ '../_base_/models/van/van_tiny.py', '../_base_/datasets/imagenet_bs64_swin_224.py', '../_base_/schedules/imagenet_bs1024_adamw_swin.py', '../_base_/default_runtime.py' ] # dataset setting data_preprocessor = dict( mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], # convert image from BGR to RGB to_rgb=True, ) bgr_mean = data_preprocessor['mean'][::-1] bgr_std = data_preprocessor['std'][::-1] train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='RandomResizedCrop', scale=224, backend='pillow', interpolation='bicubic'), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict( type='RandAugment', policies='timm_increasing', num_policies=2, total_level=10, magnitude_level=9, magnitude_std=0.5, hparams=dict( pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')), dict(type='ColorJitter', brightness=0.4, contrast=0.4, saturation=0.4), dict( type='RandomErasing', erase_prob=0.25, mode='rand', min_area_ratio=0.02, max_area_ratio=1 / 3, fill_color=bgr_mean, fill_std=bgr_std), dict(type='PackInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='ResizeEdge', scale=248, edge='short', backend='pillow', interpolation='bicubic'), dict(type='CenterCrop', crop_size=224), dict(type='PackInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline), batch_size=128) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) # schedule settings optim_wrapper = dict(clip_grad=dict(max_norm=5.0))