71 lines
1.9 KiB
Python
71 lines
1.9 KiB
Python
# data settings
|
|
# coco caption annotations can be grabbed from LAVIS repo
|
|
# https://github.com/salesforce/LAVIS/blob/main/lavis/configs/datasets/coco/defaults_cap.yaml
|
|
data_preprocessor = dict(
|
|
type='MultiModalDataPreprocessor',
|
|
mean=[122.770938, 116.7460125, 104.09373615],
|
|
std=[68.5005327, 66.6321579, 70.32316305],
|
|
to_rgb=True,
|
|
)
|
|
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='RandomResizedCrop',
|
|
scale=384,
|
|
interpolation='bicubic',
|
|
backend='pillow'),
|
|
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
|
dict(type='CleanCaption', keys='gt_caption'),
|
|
dict(
|
|
type='PackInputs',
|
|
algorithm_keys=['gt_caption'],
|
|
meta_keys=['image_id'],
|
|
),
|
|
]
|
|
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='Resize',
|
|
scale=(384, 384),
|
|
interpolation='bicubic',
|
|
backend='pillow'),
|
|
dict(type='PackInputs', meta_keys=['image_id']),
|
|
]
|
|
|
|
train_dataloader = dict(
|
|
batch_size=32,
|
|
num_workers=5,
|
|
dataset=dict(
|
|
type='COCOCaption',
|
|
data_root='data/coco',
|
|
ann_file='annotations/coco_karpathy_train.json',
|
|
pipeline=train_pipeline),
|
|
sampler=dict(type='DefaultSampler', shuffle=True),
|
|
persistent_workers=True,
|
|
drop_last=True,
|
|
)
|
|
|
|
val_dataloader = dict(
|
|
batch_size=16,
|
|
num_workers=5,
|
|
dataset=dict(
|
|
type='COCOCaption',
|
|
data_root='data/coco',
|
|
ann_file='annotations/coco_karpathy_val.json',
|
|
pipeline=test_pipeline,
|
|
),
|
|
sampler=dict(type='DefaultSampler', shuffle=False),
|
|
persistent_workers=True,
|
|
)
|
|
|
|
val_evaluator = dict(
|
|
type='COCOCaption',
|
|
ann_file='data/coco/annotations/coco_karpathy_val_gt.json',
|
|
)
|
|
|
|
# # If you want standard test, please manually configure the test dataset
|
|
test_dataloader = val_dataloader
|
|
test_evaluator = val_evaluator
|