mmpretrain/configs/_base_/datasets/flickr30k_retrieval.py

113 lines
3.1 KiB
Python

# data settings
data_preprocessor = dict(
type='MultiModalDataPreprocessor',
mean=[122.770938, 116.7460125, 104.09373615],
std=[68.5005327, 66.6321579, 70.32316305],
to_rgb=True,
)
rand_increasing_policies = [
dict(type='AutoContrast'),
dict(type='Equalize'),
dict(type='Rotate', magnitude_key='angle', magnitude_range=(0, 30)),
dict(
type='Brightness', magnitude_key='magnitude',
magnitude_range=(0, 0.0)),
dict(type='Sharpness', magnitude_key='magnitude', magnitude_range=(0, 0)),
dict(
type='Shear',
magnitude_key='magnitude',
magnitude_range=(0, 0.3),
direction='horizontal'),
dict(
type='Shear',
magnitude_key='magnitude',
magnitude_range=(0, 0.3),
direction='vertical'),
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=384,
crop_ratio_range=(0.5, 1.0),
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='RandAugment',
policies=rand_increasing_policies,
num_policies=2,
magnitude_level=5),
dict(type='CleanCaption', keys='text'),
dict(
type='PackInputs',
algorithm_keys=['text', 'is_matched'],
meta_keys=['image_id']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize',
scale=(384, 384),
interpolation='bicubic',
backend='pillow'),
dict(type='CleanCaption', keys='text'),
dict(
type='PackInputs',
algorithm_keys=['text', 'gt_text_id', 'gt_image_id'],
meta_keys=['image_id']),
]
train_dataloader = dict(
batch_size=32,
num_workers=16,
dataset=dict(
type='Flickr30kRetrieval',
data_root='data/flickr30k',
ann_file='annotations/dataset_flickr30k.json',
data_prefix='images',
split='train',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
persistent_workers=True,
drop_last=True,
)
val_dataloader = dict(
batch_size=64,
num_workers=16,
dataset=dict(
type='Flickr30kRetrieval',
data_root='data/flickr30k',
ann_file='annotations/dataset_flickr30k.json',
data_prefix='images',
split='val',
pipeline=test_pipeline,
test_mode=True, # This is required for evaluation
),
sampler=dict(type='SequentialSampler', subsample_type='sequential'),
persistent_workers=True,
)
val_evaluator = dict(type='RetrievalRecall', topk=(1, 5, 10))
# If you want standard test, please manually configure the test dataset
test_dataloader = dict(
batch_size=64,
num_workers=16,
dataset=dict(
type='Flickr30kRetrieval',
data_root='data/flickr30k',
ann_file='annotations/dataset_flickr30k.json',
data_prefix='images',
split='test',
pipeline=test_pipeline,
test_mode=True, # This is required for evaluation
),
sampler=dict(type='SequentialSampler', subsample_type='sequential'),
persistent_workers=True,
)
test_evaluator = val_evaluator