53 lines
1.3 KiB
Python
53 lines
1.3 KiB
Python
# dataset settings
|
|
dataset_type = 'ImageNet'
|
|
data_root = 'data/imagenet/'
|
|
data_preprocessor = dict(
|
|
type='SelfSupDataPreprocessor',
|
|
mean=[123.675, 116.28, 103.53],
|
|
std=[58.395, 57.12, 57.375],
|
|
to_rgb=True)
|
|
|
|
view_pipeline = [
|
|
dict(type='RandomResizedCrop', scale=224, backend='pillow'),
|
|
dict(type='RandomFlip', prob=0.5),
|
|
dict(
|
|
type='RandomApply',
|
|
transforms=[
|
|
dict(
|
|
type='ColorJitter',
|
|
brightness=0.8,
|
|
contrast=0.8,
|
|
saturation=0.8,
|
|
hue=0.2)
|
|
],
|
|
prob=0.8),
|
|
dict(
|
|
type='RandomGrayscale',
|
|
prob=0.2,
|
|
keep_channels=True,
|
|
channel_weights=(0.114, 0.587, 0.2989)),
|
|
dict(
|
|
type='GaussianBlur',
|
|
magnitude_range=(0.1, 2.0),
|
|
magnitude_std='inf',
|
|
prob=0.5),
|
|
]
|
|
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='MultiView', num_views=2, transforms=[view_pipeline]),
|
|
dict(type='PackInputs')
|
|
]
|
|
|
|
train_dataloader = dict(
|
|
batch_size=32,
|
|
num_workers=4,
|
|
persistent_workers=True,
|
|
sampler=dict(type='DefaultSampler', shuffle=True),
|
|
collate_fn=dict(type='default_collate'),
|
|
dataset=dict(
|
|
type=dataset_type,
|
|
data_root=data_root,
|
|
split='train',
|
|
pipeline=train_pipeline))
|