mmpretrain/configs/_base_/datasets/imagenet_bs32_simclr.py

53 lines
1.3 KiB
Python

# dataset settings
dataset_type = 'ImageNet'
data_root = 'data/imagenet/'
data_preprocessor = dict(
type='SelfSupDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
view_pipeline = [
dict(type='RandomResizedCrop', scale=224, backend='pillow'),
dict(type='RandomFlip', prob=0.5),
dict(
type='RandomApply',
transforms=[
dict(
type='ColorJitter',
brightness=0.8,
contrast=0.8,
saturation=0.8,
hue=0.2)
],
prob=0.8),
dict(
type='RandomGrayscale',
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(
type='GaussianBlur',
magnitude_range=(0.1, 2.0),
magnitude_std='inf',
prob=0.5),
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='MultiView', num_views=2, transforms=[view_pipeline]),
dict(type='PackInputs')
]
train_dataloader = dict(
batch_size=32,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
split='train',
pipeline=train_pipeline))