35 lines
820 B
Python
35 lines
820 B
Python
# optimizer
|
|
optim_wrapper = dict(
|
|
optimizer=dict(
|
|
type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005, nesterov=True))
|
|
|
|
# learning policy
|
|
param_scheduler = [
|
|
# warm up learning rate scheduler
|
|
dict(
|
|
type='LinearLR',
|
|
start_factor=0.01,
|
|
by_epoch=True,
|
|
begin=0,
|
|
end=5,
|
|
# update by iter
|
|
convert_to_iter_based=True),
|
|
# main learning rate scheduler
|
|
dict(
|
|
type='CosineAnnealingLR',
|
|
T_max=95,
|
|
by_epoch=True,
|
|
begin=5,
|
|
end=100,
|
|
)
|
|
]
|
|
|
|
# train, val, test setting
|
|
train_cfg = dict(by_epoch=True, max_epochs=100, val_interval=1)
|
|
val_cfg = dict()
|
|
test_cfg = dict()
|
|
|
|
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
|
# based on the actual training batch size.
|
|
auto_scale_lr = dict(base_batch_size=64)
|