mmpretrain/configs/densecl/densecl_resnet50_8xb32-cosl...

40 lines
1010 B
Python

_base_ = [
'../_base_/datasets/imagenet_bs32_mocov2.py',
'../_base_/schedules/imagenet_sgd_coslr_200e.py',
'../_base_/default_runtime.py',
]
# model settings
model = dict(
type='DenseCL',
queue_len=65536,
feat_dim=128,
momentum=0.001,
loss_lambda=0.5,
backbone=dict(
type='ResNet',
depth=50,
norm_cfg=dict(type='BN'),
zero_init_residual=False),
neck=dict(
type='DenseCLNeck',
in_channels=2048,
hid_channels=2048,
out_channels=128,
num_grid=None),
head=dict(
type='ContrastiveHead',
loss=dict(type='CrossEntropyLoss'),
temperature=0.2),
)
find_unused_parameters = True
# runtime settings
default_hooks = dict(
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3))
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=256)