mirror of
https://github.com/open-mmlab/mmpretrain.git
synced 2025-06-02 22:31:23 +08:00
* remove basehead * add moco series * add byol simclr simsiam * add ut * update configs * add simsiam hook * add and refactor beit * update ut * add cae * update extract_feat * refactor cae * add mae * refactor data preprocessor * update heads * add maskfeat * add milan * add simmim * add mixmim * fix lint * fix ut * fix lint * add eva * add densecl * add barlowtwins * add swav * fix lint * update readtherdocs rst * update docs * update * Decrease UT memory usage * Fix docstring * update DALLEEncoder * Update model docs * refactor dalle encoder * update docstring * fix ut * fix config error * add val_cfg and test_cfg * refactor clip generator * fix lint * pass check * fix ut * add lars * update type of BEiT in configs * Use MMEngine style momentum in EMA. * apply mmpretrain solarize --------- Co-authored-by: mzr1996 <mzr1996@163.com>
89 lines
2.3 KiB
Python
89 lines
2.3 KiB
Python
_base_ = [
|
|
'../_base_/datasets/imagenet_bs512_mae.py',
|
|
'../_base_/default_runtime.py',
|
|
]
|
|
|
|
# dataset settings
|
|
train_dataloader = dict(batch_size=256)
|
|
|
|
# model settings
|
|
model = dict(
|
|
type='MILAN',
|
|
backbone=dict(
|
|
type='MILANViT',
|
|
arch='b',
|
|
patch_size=16,
|
|
mask_ratio=0.75,
|
|
init_cfg=[
|
|
dict(type='Xavier', distribution='uniform', layer='Linear'),
|
|
dict(type='Constant', layer='LayerNorm', val=1.0, bias=0.0)
|
|
]),
|
|
neck=dict(
|
|
type='MILANPretrainDecoder',
|
|
init_cfg=[
|
|
dict(type='Xavier', distribution='uniform', layer='Linear'),
|
|
dict(type='Constant', layer='LayerNorm', val=1.0, bias=0.0)
|
|
]),
|
|
head=dict(
|
|
type='MIMHead',
|
|
loss=dict(
|
|
type='CosineSimilarityLoss', shift_factor=2.0, scale_factor=2.0),
|
|
),
|
|
target_generator=dict(
|
|
type='CLIPGenerator',
|
|
tokenizer_path= # noqa
|
|
'https://download.openmmlab.com/mmselfsup/1.x/target_generator_ckpt/clip_vit_base_16.pth.tar' # noqa
|
|
),
|
|
init_cfg=None)
|
|
|
|
# optimizer wrapper
|
|
optim_wrapper = dict(
|
|
type='OptimWrapper',
|
|
optimizer=dict(
|
|
type='AdamW',
|
|
lr=1.5e-4 * 4096 / 256,
|
|
betas=(0.9, 0.95),
|
|
weight_decay=0.05),
|
|
paramwise_cfg=dict(
|
|
custom_keys={
|
|
'ln': dict(decay_mult=0.0),
|
|
'bias': dict(decay_mult=0.0),
|
|
'pos_embed': dict(decay_mult=0.),
|
|
'mask_token': dict(decay_mult=0.),
|
|
'cls_token': dict(decay_mult=0.)
|
|
}))
|
|
find_unused_parameters = True
|
|
|
|
# learning rate scheduler
|
|
param_scheduler = [
|
|
dict(
|
|
type='LinearLR',
|
|
start_factor=1e-4,
|
|
by_epoch=True,
|
|
begin=0,
|
|
end=40,
|
|
convert_to_iter_based=True),
|
|
dict(
|
|
type='CosineAnnealingLR',
|
|
T_max=360,
|
|
by_epoch=True,
|
|
begin=40,
|
|
end=400,
|
|
convert_to_iter_based=True)
|
|
]
|
|
|
|
# runtime settings
|
|
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=400)
|
|
default_hooks = dict(
|
|
# only keeps the latest 3 checkpoints
|
|
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
|
|
|
|
randomness = dict(seed=0, diff_rank_seed=True)
|
|
|
|
# auto resume
|
|
resume = True
|
|
|
|
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
|
# based on the actual training batch size.
|
|
auto_scale_lr = dict(base_batch_size=2048)
|