117 lines
4.4 KiB
Python
117 lines
4.4 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import os.path as osp
|
|
from tempfile import TemporaryDirectory
|
|
from unittest import TestCase
|
|
from unittest.mock import ANY, MagicMock, patch
|
|
|
|
from mmcv.image import imread
|
|
|
|
from mmpretrain.apis import (ImageClassificationInferencer, ModelHub,
|
|
get_model, inference_model)
|
|
from mmpretrain.models import MobileNetV3
|
|
from mmpretrain.structures import DataSample
|
|
from mmpretrain.visualization import UniversalVisualizer
|
|
|
|
MODEL = 'mobilenet-v3-small-050_3rdparty_in1k'
|
|
WEIGHT = 'https://download.openmmlab.com/mmclassification/v0/mobilenet_v3/mobilenet-v3-small-050_3rdparty_in1k_20221114-e0b86be1.pth' # noqa: E501
|
|
CONFIG = ModelHub.get(MODEL).config
|
|
|
|
|
|
class TestImageClassificationInferencer(TestCase):
|
|
|
|
def test_init(self):
|
|
# test input BaseModel
|
|
model = get_model(MODEL)
|
|
inferencer = ImageClassificationInferencer(model)
|
|
self.assertEqual(model._config, inferencer.config)
|
|
self.assertIsInstance(inferencer.model.backbone, MobileNetV3)
|
|
|
|
# test input model name
|
|
with patch('mmengine.runner.load_checkpoint') as mock:
|
|
inferencer = ImageClassificationInferencer(MODEL)
|
|
self.assertIsInstance(inferencer.model.backbone, MobileNetV3)
|
|
mock.assert_called_once_with(ANY, WEIGHT, map_location='cpu')
|
|
|
|
# test input config path
|
|
inferencer = ImageClassificationInferencer(CONFIG.filename)
|
|
self.assertIsInstance(inferencer.model.backbone, MobileNetV3)
|
|
|
|
# test input config object
|
|
inferencer = ImageClassificationInferencer(CONFIG)
|
|
self.assertIsInstance(inferencer.model.backbone, MobileNetV3)
|
|
|
|
# test specify weights
|
|
with patch('mmengine.runner.load_checkpoint') as mock:
|
|
ImageClassificationInferencer(MODEL, pretrained='custom.pth')
|
|
mock.assert_called_once_with(ANY, 'custom.pth', map_location='cpu')
|
|
|
|
def test_call(self):
|
|
img_path = osp.join(osp.dirname(__file__), '../data/color.jpg')
|
|
img = imread(img_path)
|
|
|
|
# test inference classification model
|
|
inferencer = ImageClassificationInferencer(MODEL)
|
|
results = inferencer(img_path)[0]
|
|
self.assertEqual(
|
|
results.keys(),
|
|
{'pred_score', 'pred_scores', 'pred_label', 'pred_class'})
|
|
|
|
# test return_datasample=True
|
|
results = inferencer(img, return_datasamples=True)[0]
|
|
self.assertIsInstance(results, DataSample)
|
|
|
|
def test_visualize(self):
|
|
img_path = osp.join(osp.dirname(__file__), '../data/color.jpg')
|
|
img = imread(img_path)
|
|
|
|
inferencer = ImageClassificationInferencer(MODEL)
|
|
self.assertIsNone(inferencer.visualizer)
|
|
|
|
with TemporaryDirectory() as tmpdir:
|
|
inferencer(img, show_dir=tmpdir)
|
|
self.assertIsInstance(inferencer.visualizer, UniversalVisualizer)
|
|
self.assertTrue(osp.exists(osp.join(tmpdir, '0.png')))
|
|
|
|
inferencer.visualizer = MagicMock(wraps=inferencer.visualizer)
|
|
inferencer(
|
|
img_path, rescale_factor=2., draw_score=False, show_dir=tmpdir)
|
|
self.assertTrue(osp.exists(osp.join(tmpdir, 'color.png')))
|
|
inferencer.visualizer.visualize_cls.assert_called_once_with(
|
|
ANY,
|
|
ANY,
|
|
classes=inferencer.classes,
|
|
resize=None,
|
|
show=False,
|
|
wait_time=0,
|
|
rescale_factor=2.,
|
|
draw_gt=False,
|
|
draw_pred=True,
|
|
draw_score=False,
|
|
name='color',
|
|
out_file=osp.join(tmpdir, 'color.png'))
|
|
|
|
|
|
class TestInferenceAPIs(TestCase):
|
|
|
|
def test_inference_model(self):
|
|
# test backward compatibility
|
|
img_path = osp.join(osp.dirname(__file__), '../data/color.jpg')
|
|
img = imread(img_path)
|
|
|
|
model = get_model(MODEL, pretrained=True)
|
|
results = inference_model(model, img_path)
|
|
self.assertEqual(
|
|
results.keys(),
|
|
{'pred_score', 'pred_scores', 'pred_label', 'pred_class'})
|
|
|
|
results = inference_model(model, img)
|
|
self.assertEqual(
|
|
results.keys(),
|
|
{'pred_score', 'pred_scores', 'pred_label', 'pred_class'})
|
|
|
|
# test input model name
|
|
results = inference_model(MODEL, img)
|
|
self.assertEqual(
|
|
results.keys(),
|
|
{'pred_score', 'pred_scores', 'pred_label', 'pred_class'})
|