mmpretrain/tests/test_models/test_selfsup/test_simsiam.py

65 lines
1.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
import pytest
import torch
from mmpretrain.models import SimSiam
from mmpretrain.structures import DataSample
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_simsiam():
data_preprocessor = {
'mean': (123.675, 116.28, 103.53),
'std': (58.395, 57.12, 57.375),
'to_rgb': True,
}
backbone = dict(
type='ResNet',
depth=18,
norm_cfg=dict(type='BN'),
zero_init_residual=True)
neck = dict(
type='NonLinearNeck',
in_channels=512,
hid_channels=2,
out_channels=2,
num_layers=3,
with_last_bn_affine=False,
with_avg_pool=True,
norm_cfg=dict(type='BN1d'))
head = dict(
type='LatentPredictHead',
loss=dict(type='CosineSimilarityLoss'),
predictor=dict(
type='NonLinearNeck',
in_channels=2,
hid_channels=2,
out_channels=2,
with_avg_pool=False,
with_last_bn=False,
with_last_bias=True,
norm_cfg=dict(type='BN1d')))
alg = SimSiam(
backbone=backbone,
neck=neck,
head=head,
data_preprocessor=copy.deepcopy(data_preprocessor))
fake_data = {
'inputs':
[torch.randn((2, 3, 224, 224)),
torch.randn((2, 3, 224, 224))],
'data_samples': [DataSample() for _ in range(2)]
}
fake_inputs = alg.data_preprocessor(fake_data)
fake_loss = alg(**fake_inputs, mode='loss')
assert fake_loss['loss'] > -1
# test extract
fake_feat = alg(fake_inputs['inputs'][0], mode='tensor')
assert fake_feat[0].size() == torch.Size([2, 512, 7, 7])