mmpretrain/tools/analysis_tools/analyze_logs.py

219 lines
7.0 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import re
from itertools import groupby
import matplotlib.pyplot as plt
import numpy as np
from mmpretrain.utils import load_json_log
def cal_train_time(log_dicts, args):
"""Compute the average time per training iteration."""
for i, log_dict in enumerate(log_dicts):
print(f'{"-" * 5}Analyze train time of {args.json_logs[i]}{"-" * 5}')
train_logs = log_dict['train']
if 'epoch' in train_logs[0]:
epoch_ave_times = []
for _, logs in groupby(train_logs, lambda log: log['epoch']):
if args.include_outliers:
all_time = np.array([log['time'] for log in logs])
else:
all_time = np.array([log['time'] for log in logs])[1:]
epoch_ave_times.append(all_time.mean())
epoch_ave_times = np.array(epoch_ave_times)
slowest_epoch = epoch_ave_times.argmax()
fastest_epoch = epoch_ave_times.argmin()
std_over_epoch = epoch_ave_times.std()
print(f'slowest epoch {slowest_epoch + 1}, '
f'average time is {epoch_ave_times[slowest_epoch]:.4f}')
print(f'fastest epoch {fastest_epoch + 1}, '
f'average time is {epoch_ave_times[fastest_epoch]:.4f}')
print(f'time std over epochs is {std_over_epoch:.4f}')
avg_iter_time = np.array([log['time'] for log in train_logs]).mean()
print(f'average iter time: {avg_iter_time:.4f} s/iter')
print()
def get_legends(args):
"""if legend is None, use {filename}_{key} as legend."""
legend = args.legend
if legend is None:
legend = []
for json_log in args.json_logs:
for metric in args.keys:
# remove '.json' in the end of log names
basename = os.path.basename(json_log)[:-5]
if basename.endswith('.log'):
basename = basename[:-4]
legend.append(f'{basename}_{metric}')
assert len(legend) == (len(args.json_logs) * len(args.keys))
return legend
def plot_phase_train(metric, train_logs, curve_label):
"""plot phase of train curve."""
xs = np.array([log['step'] for log in train_logs])
ys = np.array([log[metric] for log in train_logs])
if 'epoch' in train_logs[0]:
scale_factor = train_logs[-1]['step'] / train_logs[-1]['epoch']
xs = xs / scale_factor
plt.xlabel('Epochs')
else:
plt.xlabel('Iters')
plt.plot(xs, ys, label=curve_label, linewidth=0.75)
def plot_phase_val(metric, val_logs, curve_label):
"""plot phase of val curve."""
xs = np.array([log['step'] for log in val_logs])
ys = np.array([log[metric] for log in val_logs])
plt.xlabel('Steps')
plt.plot(xs, ys, label=curve_label, linewidth=0.75)
def plot_curve_helper(log_dicts, metrics, args, legend):
"""plot curves from log_dicts by metrics."""
num_metrics = len(metrics)
for i, log_dict in enumerate(log_dicts):
for j, key in enumerate(metrics):
json_log = args.json_logs[i]
print(f'plot curve of {json_log}, metric is {key}')
curve_label = legend[i * num_metrics + j]
train_keys = {} if len(log_dict['train']) == 0 else set(
log_dict['train'][0].keys()) - {'step', 'epoch'}
val_keys = {} if len(log_dict['val']) == 0 else set(
log_dict['val'][0].keys()) - {'step'}
if key in val_keys:
plot_phase_val(key, log_dict['val'], curve_label)
elif key in train_keys:
plot_phase_train(key, log_dict['train'], curve_label)
else:
raise ValueError(
f'Invalid key "{key}", please choose from '
f'{set.union(set(train_keys), set(val_keys))}.')
plt.legend()
def plot_curve(log_dicts, args):
"""Plot train metric-iter graph."""
# set style
try:
import seaborn as sns
sns.set_style(args.style)
except ImportError:
pass
# set plot window size
wind_w, wind_h = args.window_size.split('*')
wind_w, wind_h = int(wind_w), int(wind_h)
plt.figure(figsize=(wind_w, wind_h))
# get legends and metrics
legends = get_legends(args)
metrics = args.keys
# plot curves from log_dicts by metrics
plot_curve_helper(log_dicts, metrics, args, legends)
# set title and show or save
if args.title is not None:
plt.title(args.title)
if args.out is None:
plt.show()
else:
print(f'save curve to: {args.out}')
plt.savefig(args.out)
plt.cla()
def add_plot_parser(subparsers):
parser_plt = subparsers.add_parser(
'plot_curve', help='parser for plotting curves')
parser_plt.add_argument(
'json_logs',
type=str,
nargs='+',
help='path of train log in json format')
parser_plt.add_argument(
'--keys',
type=str,
nargs='+',
default=['loss'],
help='the metric that you want to plot')
parser_plt.add_argument('--title', type=str, help='title of figure')
parser_plt.add_argument(
'--legend',
type=str,
nargs='+',
default=None,
help='legend of each plot')
parser_plt.add_argument(
'--style',
type=str,
default='whitegrid',
help='style of the figure, need `seaborn` package.')
parser_plt.add_argument('--out', type=str, default=None)
parser_plt.add_argument(
'--window-size',
default='12*7',
help='size of the window to display images, in format of "$W*$H".')
def add_time_parser(subparsers):
parser_time = subparsers.add_parser(
'cal_train_time',
help='parser for computing the average time per training iteration')
parser_time.add_argument(
'json_logs',
type=str,
nargs='+',
help='path of train log in json format')
parser_time.add_argument(
'--include-outliers',
action='store_true',
help='include the first value of every epoch when computing '
'the average time')
def parse_args():
parser = argparse.ArgumentParser(description='Analyze Json Log')
# currently only support plot curve and calculate average train time
subparsers = parser.add_subparsers(dest='task', help='task parser')
add_plot_parser(subparsers)
add_time_parser(subparsers)
args = parser.parse_args()
if hasattr(args, 'window_size') and args.window_size != '':
assert re.match(r'\d+\*\d+', args.window_size), \
"'window-size' must be in format 'W*H'."
return args
def main():
args = parse_args()
json_logs = args.json_logs
for json_log in json_logs:
assert json_log.endswith('.json')
log_dicts = [load_json_log(json_log) for json_log in json_logs]
if args.task == 'cal_train_time':
cal_train_time(log_dicts, args)
elif args.task == 'plot_curve':
plot_curve(log_dicts, args)
if __name__ == '__main__':
main()