mmpretrain/tools/misc/verify_dataset.py

146 lines
4.8 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import multiprocessing
import os
from pathlib import Path
from mmengine import (Config, DictAction, track_parallel_progress,
track_progress)
from mmpretrain.datasets import build_dataset
from mmpretrain.registry import TRANSFORMS
file_lock = multiprocessing.Lock()
def parse_args():
parser = argparse.ArgumentParser(description='Verify Dataset')
parser.add_argument('config', help='config file path')
parser.add_argument(
'--out-path',
type=str,
default='brokenfiles.log',
help='output path of all the broken files. If the specified path '
'already exists, delete the previous file ')
parser.add_argument(
'--phase',
default='train',
type=str,
choices=['train', 'test', 'val'],
help='phase of dataset to visualize, accept "train" "test" and "val".')
parser.add_argument(
'--num-process', type=int, default=1, help='number of process to use')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
assert args.out_path is not None
assert args.num_process > 0
return args
class DatasetValidator():
"""the dataset tool class to check if all file are broken."""
def __init__(self, dataset_cfg, log_file_path):
super(DatasetValidator, self).__init__()
# keep only LoadImageFromFile pipeline
from mmpretrain.datasets import get_transform_idx
load_idx = get_transform_idx(dataset_cfg.pipeline, 'LoadImageFromFile')
assert load_idx >= 0, \
'This tool is only for datasets needs to load image from files.'
self.pipeline = TRANSFORMS.build(dataset_cfg.pipeline[load_idx])
dataset_cfg.pipeline = []
dataset = build_dataset(dataset_cfg)
self.dataset = dataset
self.log_file_path = log_file_path
def valid_idx(self, idx):
item = self.dataset[idx]
try:
item = self.pipeline(item)
except Exception:
with open(self.log_file_path, 'a') as f:
# add file lock to prevent multi-process writing errors
filepath = str(Path(item['img_path']))
file_lock.acquire()
f.write(filepath + '\n')
file_lock.release()
print(f'{filepath} cannot be read correctly, please check it.')
def __len__(self):
return len(self.dataset)
def print_info(log_file_path):
"""print some information and do extra action."""
print()
with open(log_file_path, 'r') as f:
content = f.read().strip()
if content == '':
print('There is no broken file found.')
os.remove(log_file_path)
else:
num_file = len(content.split('\n'))
print(f'{num_file} broken files found, name list save in file:'
f'{log_file_path}')
print()
def main():
# parse cfg and args
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# touch output file to save broken files list.
output_path = Path(args.out_path)
if not output_path.parent.exists():
raise Exception("Path '--out-path' parent directory not found.")
if output_path.exists():
os.remove(output_path)
output_path.touch()
if args.phase == 'train':
dataset_cfg = cfg.train_dataloader.dataset
elif args.phase == 'val':
dataset_cfg = cfg.val_dataloader.dataset
elif args.phase == 'test':
dataset_cfg = cfg.test_dataloader.dataset
else:
raise ValueError("'--phase' only support 'train', 'val' and 'test'.")
# do validate
validator = DatasetValidator(dataset_cfg, output_path)
if args.num_process > 1:
# The default chunksize calcuation method of Pool.map
chunksize, extra = divmod(len(validator), args.num_process * 8)
if extra:
chunksize += 1
track_parallel_progress(
validator.valid_idx,
list(range(len(validator))),
args.num_process,
chunksize=chunksize,
keep_order=False)
else:
track_progress(validator.valid_idx, list(range(len(validator))))
print_info(output_path)
if __name__ == '__main__':
main()