mmpretrain/tools/model_converters/levit2mmpretrain.py

81 lines
2.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
from collections import OrderedDict
import mmengine
import torch
def convert_levit(args, ckpt):
new_ckpt = OrderedDict()
stage = 0
block = 0
change = True
for k, v in list(ckpt.items()):
new_v = v
if k.startswith('head_dist'):
new_k = k.replace('head_dist.', 'head.head_dist.')
new_k = new_k.replace('.l.', '.linear.')
new_ckpt[new_k] = new_v
continue
elif k.startswith('head'):
new_k = k.replace('head.', 'head.head.')
new_k = new_k.replace('.l.', '.linear.')
new_ckpt[new_k] = new_v
continue
elif k.startswith('patch_embed'):
new_k = k.replace('patch_embed.',
'patch_embed.patch_embed.').replace(
'.c.', '.conv.')
elif k.startswith('blocks'):
strs = k.split('.')
# new_k = k.replace('.c.', '.').replace('.bn.', '.')
new_k = k
if '.m.' in k:
new_k = new_k.replace('.m.0', '.m.linear1')
new_k = new_k.replace('.m.2', '.m.linear2')
new_k = new_k.replace('.m.', '.block.')
change = True
elif change:
stage += 1
block = int(strs[1])
change = False
new_k = new_k.replace(
'blocks.%s.' % (strs[1]),
'stages.%d.%d.' % (stage, int(strs[1]) - block))
new_k = new_k.replace('.c.', '.linear.')
else:
new_k = k
# print(new_k)
new_k = 'backbone.' + new_k
new_ckpt[new_k] = new_v
return new_ckpt
def main():
parser = argparse.ArgumentParser(
description='Convert keys in timm pretrained vit models to '
'MMPretrain style.')
parser.add_argument('src', help='src model path or url')
# The dst path must be a full path of the new checkpoint.
parser.add_argument('dst', help='save path')
args = parser.parse_args()
checkpoint = torch.load(args.src, map_location='cpu')
checkpoint = checkpoint['model']
if 'state_dict' in checkpoint:
# timm checkpoint
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
weight = convert_levit(args, state_dict)
mmengine.mkdir_or_exist(osp.dirname(args.dst))
torch.save(weight, args.dst)
if __name__ == '__main__':
main()