mmpretrain/tools/model_converters/mobilenetv2_to_mmpretrain.py

136 lines
4.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
from collections import OrderedDict
import torch
def convert_conv1(model_key, model_weight, state_dict, converted_names):
if model_key.find('features.0.0') >= 0:
new_key = model_key.replace('features.0.0', 'backbone.conv1.conv')
else:
new_key = model_key.replace('features.0.1', 'backbone.conv1.bn')
state_dict[new_key] = model_weight
converted_names.add(model_key)
print(f'Convert {model_key} to {new_key}')
def convert_conv5(model_key, model_weight, state_dict, converted_names):
if model_key.find('features.18.0') >= 0:
new_key = model_key.replace('features.18.0', 'backbone.conv2.conv')
else:
new_key = model_key.replace('features.18.1', 'backbone.conv2.bn')
state_dict[new_key] = model_weight
converted_names.add(model_key)
print(f'Convert {model_key} to {new_key}')
def convert_head(model_key, model_weight, state_dict, converted_names):
new_key = model_key.replace('classifier.1', 'head.fc')
state_dict[new_key] = model_weight
converted_names.add(model_key)
print(f'Convert {model_key} to {new_key}')
def convert_block(model_key, model_weight, state_dict, converted_names):
split_keys = model_key.split('.')
layer_id = int(split_keys[1])
new_layer_id = 0
sub_id = 0
if layer_id == 1:
new_layer_id = 1
sub_id = 0
elif layer_id in range(2, 4):
new_layer_id = 2
sub_id = layer_id - 2
elif layer_id in range(4, 7):
new_layer_id = 3
sub_id = layer_id - 4
elif layer_id in range(7, 11):
new_layer_id = 4
sub_id = layer_id - 7
elif layer_id in range(11, 14):
new_layer_id = 5
sub_id = layer_id - 11
elif layer_id in range(14, 17):
new_layer_id = 6
sub_id = layer_id - 14
elif layer_id == 17:
new_layer_id = 7
sub_id = 0
new_key = model_key.replace(f'features.{layer_id}',
f'backbone.layer{new_layer_id}.{sub_id}')
if new_layer_id == 1:
if new_key.find('conv.0.0') >= 0:
new_key = new_key.replace('conv.0.0', 'conv.0.conv')
elif new_key.find('conv.0.1') >= 0:
new_key = new_key.replace('conv.0.1', 'conv.0.bn')
elif new_key.find('conv.1') >= 0:
new_key = new_key.replace('conv.1', 'conv.1.conv')
elif new_key.find('conv.2') >= 0:
new_key = new_key.replace('conv.2', 'conv.1.bn')
else:
raise ValueError(f'Unsupported conversion of key {model_key}')
else:
if new_key.find('conv.0.0') >= 0:
new_key = new_key.replace('conv.0.0', 'conv.0.conv')
elif new_key.find('conv.0.1') >= 0:
new_key = new_key.replace('conv.0.1', 'conv.0.bn')
elif new_key.find('conv.1.0') >= 0:
new_key = new_key.replace('conv.1.0', 'conv.1.conv')
elif new_key.find('conv.1.1') >= 0:
new_key = new_key.replace('conv.1.1', 'conv.1.bn')
elif new_key.find('conv.2') >= 0:
new_key = new_key.replace('conv.2', 'conv.2.conv')
elif new_key.find('conv.3') >= 0:
new_key = new_key.replace('conv.3', 'conv.2.bn')
else:
raise ValueError(f'Unsupported conversion of key {model_key}')
print(f'Convert {model_key} to {new_key}')
state_dict[new_key] = model_weight
converted_names.add(model_key)
def convert(src, dst):
"""Convert keys in torchvision pretrained MobileNetV2 models to mmpretrain
style."""
# load pytorch model
blobs = torch.load(src, map_location='cpu')
# convert to pytorch style
state_dict = OrderedDict()
converted_names = set()
for key, weight in blobs.items():
if 'features.0' in key:
convert_conv1(key, weight, state_dict, converted_names)
elif 'classifier' in key:
convert_head(key, weight, state_dict, converted_names)
elif 'features.18' in key:
convert_conv5(key, weight, state_dict, converted_names)
else:
convert_block(key, weight, state_dict, converted_names)
# check if all layers are converted
for key in blobs:
if key not in converted_names:
print(f'not converted: {key}')
# save checkpoint
checkpoint = dict()
checkpoint['state_dict'] = state_dict
torch.save(checkpoint, dst)
def main():
parser = argparse.ArgumentParser(description='Convert model keys')
parser.add_argument('src', help='src detectron model path')
parser.add_argument('dst', help='save path')
args = parser.parse_args()
convert(args.src, args.dst)
if __name__ == '__main__':
main()