163 lines
5.3 KiB
Python
163 lines
5.3 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os
|
|
import os.path as osp
|
|
from copy import deepcopy
|
|
|
|
from mmengine.config import Config, ConfigDict, DictAction
|
|
from mmengine.registry import RUNNERS
|
|
from mmengine.runner import Runner
|
|
from mmengine.utils import digit_version
|
|
from mmengine.utils.dl_utils import TORCH_VERSION
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='Train a model')
|
|
parser.add_argument('config', help='train config file path')
|
|
parser.add_argument('--work-dir', help='the dir to save logs and models')
|
|
parser.add_argument(
|
|
'--resume',
|
|
nargs='?',
|
|
type=str,
|
|
const='auto',
|
|
help='If specify checkpoint path, resume from it, while if not '
|
|
'specify, try to auto resume from the latest checkpoint '
|
|
'in the work directory.')
|
|
parser.add_argument(
|
|
'--amp',
|
|
action='store_true',
|
|
help='enable automatic-mixed-precision training')
|
|
parser.add_argument(
|
|
'--no-validate',
|
|
action='store_true',
|
|
help='whether not to evaluate the checkpoint during training')
|
|
parser.add_argument(
|
|
'--auto-scale-lr',
|
|
action='store_true',
|
|
help='whether to auto scale the learning rate according to the '
|
|
'actual batch size and the original batch size.')
|
|
parser.add_argument(
|
|
'--no-pin-memory',
|
|
action='store_true',
|
|
help='whether to disable the pin_memory option in dataloaders.')
|
|
parser.add_argument(
|
|
'--no-persistent-workers',
|
|
action='store_true',
|
|
help='whether to disable the persistent_workers option in dataloaders.'
|
|
)
|
|
parser.add_argument(
|
|
'--cfg-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='override some settings in the used config, the key-value pair '
|
|
'in xxx=yyy format will be merged into config file. If the value to '
|
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
|
'Note that the quotation marks are necessary and that no white space '
|
|
'is allowed.')
|
|
parser.add_argument(
|
|
'--launcher',
|
|
choices=['none', 'pytorch', 'slurm', 'mpi'],
|
|
default='none',
|
|
help='job launcher')
|
|
# When using PyTorch version >= 2.0.0, the `torch.distributed.launch`
|
|
# will pass the `--local-rank` parameter to `tools/train.py` instead
|
|
# of `--local_rank`.
|
|
parser.add_argument('--local_rank', '--local-rank', type=int, default=0)
|
|
args = parser.parse_args()
|
|
if 'LOCAL_RANK' not in os.environ:
|
|
os.environ['LOCAL_RANK'] = str(args.local_rank)
|
|
|
|
return args
|
|
|
|
|
|
def merge_args(cfg, args):
|
|
"""Merge CLI arguments to config."""
|
|
if args.no_validate:
|
|
cfg.val_cfg = None
|
|
cfg.val_dataloader = None
|
|
cfg.val_evaluator = None
|
|
|
|
cfg.launcher = args.launcher
|
|
|
|
# work_dir is determined in this priority: CLI > segment in file > filename
|
|
if args.work_dir is not None:
|
|
# update configs according to CLI args if args.work_dir is not None
|
|
cfg.work_dir = args.work_dir
|
|
elif cfg.get('work_dir', None) is None:
|
|
# use config filename as default work_dir if cfg.work_dir is None
|
|
cfg.work_dir = osp.join('./work_dirs',
|
|
osp.splitext(osp.basename(args.config))[0])
|
|
|
|
# enable automatic-mixed-precision training
|
|
if args.amp is True:
|
|
cfg.optim_wrapper.type = 'AmpOptimWrapper'
|
|
cfg.optim_wrapper.setdefault('loss_scale', 'dynamic')
|
|
|
|
# resume training
|
|
if args.resume == 'auto':
|
|
cfg.resume = True
|
|
cfg.load_from = None
|
|
elif args.resume is not None:
|
|
cfg.resume = True
|
|
cfg.load_from = args.resume
|
|
|
|
# enable auto scale learning rate
|
|
if args.auto_scale_lr:
|
|
cfg.auto_scale_lr.enable = True
|
|
|
|
# set dataloader args
|
|
default_dataloader_cfg = ConfigDict(
|
|
pin_memory=True,
|
|
persistent_workers=True,
|
|
collate_fn=dict(type='default_collate'),
|
|
)
|
|
if digit_version(TORCH_VERSION) < digit_version('1.8.0'):
|
|
default_dataloader_cfg.persistent_workers = False
|
|
|
|
def set_default_dataloader_cfg(cfg, field):
|
|
if cfg.get(field, None) is None:
|
|
return
|
|
dataloader_cfg = deepcopy(default_dataloader_cfg)
|
|
dataloader_cfg.update(cfg[field])
|
|
cfg[field] = dataloader_cfg
|
|
if args.no_pin_memory:
|
|
cfg[field]['pin_memory'] = False
|
|
if args.no_persistent_workers:
|
|
cfg[field]['persistent_workers'] = False
|
|
|
|
set_default_dataloader_cfg(cfg, 'train_dataloader')
|
|
set_default_dataloader_cfg(cfg, 'val_dataloader')
|
|
set_default_dataloader_cfg(cfg, 'test_dataloader')
|
|
|
|
if args.cfg_options is not None:
|
|
cfg.merge_from_dict(args.cfg_options)
|
|
|
|
return cfg
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
# load config
|
|
cfg = Config.fromfile(args.config)
|
|
|
|
# merge cli arguments to config
|
|
cfg = merge_args(cfg, args)
|
|
|
|
# build the runner from config
|
|
if 'runner_type' not in cfg:
|
|
# build the default runner
|
|
runner = Runner.from_cfg(cfg)
|
|
else:
|
|
# build customized runner from the registry
|
|
# if 'runner_type' is set in the cfg
|
|
runner = RUNNERS.build(cfg)
|
|
|
|
# start training
|
|
runner.train()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|