mmpretrain/tools/analysis_tools/get_flops.py

82 lines
2.4 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import torch
try:
from fvcore.nn import (ActivationCountAnalysis, FlopCountAnalysis,
flop_count_str, flop_count_table, parameter_count)
except ImportError:
print('You may need to install fvcore for flops computation, '
'and you can use `pip install fvcore` to set up the environment')
from fvcore.nn.print_model_statistics import _format_size
from mmengine import Config
from mmcls.models import build_classifier
def parse_args():
parser = argparse.ArgumentParser(description='Get model flops and params')
parser.add_argument('config', help='config file path')
parser.add_argument(
'--shape',
type=int,
nargs='+',
default=[224, 224],
help='input image size')
args = parser.parse_args()
return args
def main():
args = parse_args()
if len(args.shape) == 1:
input_shape = (3, args.shape[0], args.shape[0])
elif len(args.shape) == 2:
input_shape = (3, ) + tuple(args.shape)
else:
raise ValueError('invalid input shape')
cfg = Config.fromfile(args.config)
model = build_classifier(cfg.model)
model.eval()
if hasattr(model, 'extract_feat'):
model.forward = model.extract_feat
else:
raise NotImplementedError(
'FLOPs counter is currently not currently supported with {}'.
format(model.__class__.__name__))
inputs = (torch.randn((1, *input_shape)), )
flops_ = FlopCountAnalysis(model, inputs)
activations_ = ActivationCountAnalysis(model, inputs)
flops = _format_size(flops_.total())
activations = _format_size(activations_.total())
params = _format_size(parameter_count(model)[''])
flop_table = flop_count_table(
flops=flops_,
activations=activations_,
show_param_shapes=True,
)
flop_str = flop_count_str(flops=flops_, activations=activations_)
print('\n' + flop_str)
print('\n' + flop_table)
split_line = '=' * 30
print(f'{split_line}\nInput shape: {input_shape}\n'
f'Flops: {flops}\nParams: {params}\n'
f'Activation: {activations}\n{split_line}')
print('!!!Please be cautious if you use the results in papers. '
'You may need to check if all ops are supported and verify that the '
'flops computation is correct.')
if __name__ == '__main__':
main()