mmpretrain/tests/test_models/test_backbones/test_edgenext.py

85 lines
2.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmpretrain.models.backbones import EdgeNeXt
def test_assertion():
with pytest.raises(AssertionError):
EdgeNeXt(arch='unknown')
with pytest.raises(AssertionError):
# EdgeNeXt arch dict should include 'embed_dims',
EdgeNeXt(arch=dict(channels=[24, 48, 88, 168]))
with pytest.raises(AssertionError):
# EdgeNeXt arch dict should include 'embed_dims',
EdgeNeXt(arch=dict(depths=[2, 2, 6, 2], channels=[24, 48, 88, 168]))
def test_edgenext():
# Test forward
model = EdgeNeXt(arch='xxsmall', out_indices=-1)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size([1, 168])
# Test forward with multiple outputs
model = EdgeNeXt(arch='xxsmall', out_indices=(0, 1, 2, 3))
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 24])
assert feat[1].shape == torch.Size([1, 48])
assert feat[2].shape == torch.Size([1, 88])
assert feat[3].shape == torch.Size([1, 168])
# Test with custom arch
model = EdgeNeXt(
arch={
'depths': [2, 3, 4, 5],
'channels': [20, 40, 80, 160],
'num_heads': [4, 4, 4, 4]
},
out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 20])
assert feat[1].shape == torch.Size([1, 40])
assert feat[2].shape == torch.Size([1, 80])
assert feat[3].shape == torch.Size([1, 160])
# Test without gap before final norm
model = EdgeNeXt(
arch='small', out_indices=(0, 1, 2, 3), gap_before_final_norm=False)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 48, 56, 56])
assert feat[1].shape == torch.Size([1, 96, 28, 28])
assert feat[2].shape == torch.Size([1, 160, 14, 14])
assert feat[3].shape == torch.Size([1, 304, 7, 7])
# Test frozen_stages
model = EdgeNeXt(arch='small', out_indices=(0, 1, 2, 3), frozen_stages=2)
model.init_weights()
model.train()
for i in range(2):
assert not model.downsample_layers[i].training
assert not model.stages[i].training
for i in range(2, 4):
assert model.downsample_layers[i].training
assert model.stages[i].training