64 lines
1.7 KiB
Python
64 lines
1.7 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os.path as osp
|
|
from collections import OrderedDict
|
|
|
|
import mmengine
|
|
import torch
|
|
from mmengine.runner import CheckpointLoader
|
|
|
|
|
|
def convert_convnext(ckpt):
|
|
|
|
new_ckpt = OrderedDict()
|
|
|
|
for k, v in list(ckpt.items()):
|
|
new_v = v
|
|
if k.startswith('head'):
|
|
new_k = k.replace('head.', 'head.fc.')
|
|
new_ckpt[new_k] = new_v
|
|
continue
|
|
elif k.startswith('stages'):
|
|
if 'dwconv' in k:
|
|
new_k = k.replace('dwconv', 'depthwise_conv')
|
|
elif 'pwconv' in k:
|
|
new_k = k.replace('pwconv', 'pointwise_conv')
|
|
else:
|
|
new_k = k
|
|
elif k.startswith('norm'):
|
|
new_k = k.replace('norm', 'norm3')
|
|
else:
|
|
new_k = k
|
|
|
|
if not new_k.startswith('head'):
|
|
new_k = 'backbone.' + new_k
|
|
new_ckpt[new_k] = new_v
|
|
return new_ckpt
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(
|
|
description='Convert keys in pretrained convnext '
|
|
'models to mmpretrain style.')
|
|
parser.add_argument('src', help='src model path or url')
|
|
# The dst path must be a full path of the new checkpoint.
|
|
parser.add_argument('dst', help='save path')
|
|
args = parser.parse_args()
|
|
|
|
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu')
|
|
|
|
if 'model' in checkpoint:
|
|
state_dict = checkpoint['model']
|
|
else:
|
|
state_dict = checkpoint
|
|
|
|
weight = convert_convnext(state_dict)
|
|
mmengine.mkdir_or_exist(osp.dirname(args.dst))
|
|
torch.save(dict(state_dict=weight), args.dst)
|
|
|
|
print('Done!!')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|