mmpretrain/tools/model_converters/eva02_to_mmpretrain.py

154 lines
4.8 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
from collections import OrderedDict
import mmengine
import torch
from mmengine.runner import CheckpointLoader
def convert_eva02(ckpt):
new_ckpt = OrderedDict()
qkv_proj = {}
qkv_bias = {}
w12_weight = {}
w12_bias = {}
banned = {
'mask_token',
'lm_head.weight',
'lm_head.bias',
'norm.weight',
'norm.bias',
}
for k, v in list(ckpt.items()):
if k in banned:
continue
if k.startswith('head'):
new_k = k.replace('head.', 'head.fc.')
new_ckpt[new_k] = v
else:
if k.startswith('patch_embed'):
new_k = k.replace('proj.', 'projection.')
elif k.startswith('fc_norm') or k.startswith('norm'):
new_k = k.replace('norm.', 'ln2.')
new_k = k.replace('fc_norm.', 'ln2.')
elif k.startswith('blocks'):
new_k = k.replace('blocks.', 'layers.')
if 'mlp' in new_k:
if 'w1.' in new_k or 'w2.' in new_k:
# For base and large version, mlp is implemented with
# 2 linears, where w1 and w2 are required to integrate
# into w12.
s = new_k.split('.') # e.g. layers.0.mlp.w1.weight
idx = s[1]
if 'weight' in new_k:
# w1.weight or w2.weight
if idx not in w12_weight:
w12_weight[idx] = {}
w12_weight[idx][s[-2]] = v
else:
# w1.bias or w2.bias
if idx not in w12_bias:
w12_bias[idx] = {}
w12_bias[idx][s[-2]] = v
continue
if 'ffn_ln' in new_k:
new_k = new_k.replace('ffn_ln.', 'norm.')
elif 'attn' in new_k:
if 'q_proj.weight' in new_k or \
'k_proj.weight' in new_k or \
'v_proj.weight' in new_k:
# For base and large version, qkv projection is
# implemented with three linear layers,
s = new_k.split('.')
idx = s[1]
if idx not in qkv_proj:
qkv_proj[idx] = {}
qkv_proj[idx][s[-2]] = v
continue
if 'q_bias' in new_k or 'v_bias' in new_k:
# k_bias is 0
s = new_k.split('.')
idx = s[1]
if idx not in qkv_bias:
qkv_bias[idx] = {}
qkv_bias[idx][s[-1]] = v
continue
else:
new_k = k
new_k = 'backbone.' + new_k
new_ckpt[new_k] = v
for idx in qkv_proj:
q_proj = qkv_proj[idx]['q_proj']
k_proj = qkv_proj[idx]['k_proj']
v_proj = qkv_proj[idx]['v_proj']
weight = torch.cat((q_proj, k_proj, v_proj))
new_k = f'backbone.layers.{idx}.attn.qkv.weight'
new_ckpt[new_k] = weight
for idx in qkv_bias:
q_bias = qkv_bias[idx]['q_bias']
k_bias = torch.zeros_like(q_bias)
v_bias = qkv_bias[idx]['v_bias']
weight = torch.cat((q_bias, k_bias, v_bias))
new_k = f'backbone.layers.{idx}.attn.qkv.bias'
new_ckpt[new_k] = weight
for idx in w12_weight:
w1 = w12_weight[idx]['w1']
w2 = w12_weight[idx]['w2']
weight = torch.cat((w1, w2))
new_k = f'backbone.layers.{idx}.mlp.w12.weight'
new_ckpt[new_k] = weight
for idx in w12_bias:
w1 = w12_bias[idx]['w1']
w2 = w12_bias[idx]['w2']
weight = torch.cat((w1, w2))
new_k = f'backbone.layers.{idx}.mlp.w12.bias'
new_ckpt[new_k] = weight
return new_ckpt
def main():
parser = argparse.ArgumentParser(
description='Convert keys in pretrained eva02 '
'models to mmpretrain style.')
parser.add_argument('src', help='src model path or url')
# The dst path must be a full path of the new checkpoint.
parser.add_argument('dst', help='save path')
args = parser.parse_args()
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu')
if 'module' in checkpoint:
state_dict = checkpoint['module']
else:
state_dict = checkpoint
weight = convert_eva02(state_dict)
mmengine.mkdir_or_exist(osp.dirname(args.dst))
torch.save(weight, args.dst)
print('Done!!')
if __name__ == '__main__':
main()