mmpretrain/configs/_base_/datasets/imagenet_bs64.py
Lei Yang 9547e7b7a5
Add model inference (#16)
* add model inference on single image

* rm --eval

* revise doc

* add inference tool and demo

* fix linting

* rename inference_image to inference_model

* infer pred_label and pred_score

* fix linting

* add docstr for inference

* add remove_keys

* add doc for inference

* dump results rather than outputs

* add class_names

* add related infer scripts

* add demo image and the first part of colab tutorial

* conduct evaluation in dataset

* return lst in simple_test

* compuate topk accuracy with numpy

* return outputs in test api

* merge inference and evaluation tool

* fix typo

* rm gt_labels in test conifg

* get gt_labels during evaluation

* sperate the ipython notebook to another PR

* return tensor for onnx_export

* detach var in simple_test

* rm inference script

* rm inference script

* construct data dict to replace LoadImage

* print first predicted result if args.out is None

* modify test_pipeline in inference

* refactor class_names of imagenet

* set class_to_idx as a property in base dataset

* output pred_class during inference

* remove unused docstr
2020-09-30 19:00:20 +08:00

41 lines
1.4 KiB
Python

# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=224),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
train=dict(
type=dataset_type,
data_prefix='data/imagenet/train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline),
test=dict(
# replace `data/val` with `data/test` for standard test
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='accuracy')