mmpretrain/tests/test_heads.py

98 lines
2.7 KiB
Python

from unittest.mock import patch
import pytest
import torch
from mmcls.models.heads import (ClsHead, LinearClsHead, MultiLabelClsHead,
MultiLabelLinearClsHead, StackedLinearClsHead)
def test_cls_head():
# test ClsHead with cal_acc=False
head = ClsHead()
fake_cls_score = torch.rand(4, 3)
fake_gt_label = torch.randint(0, 2, (4, ))
losses = head.loss(fake_cls_score, fake_gt_label)
assert losses['loss'].item() > 0
# test ClsHead with cal_acc=True
head = ClsHead(cal_acc=True)
fake_cls_score = torch.rand(4, 3)
fake_gt_label = torch.randint(0, 2, (4, ))
losses = head.loss(fake_cls_score, fake_gt_label)
assert losses['loss'].item() > 0
# test LinearClsHead
head = LinearClsHead(10, 100)
fake_cls_score = torch.rand(4, 10)
fake_gt_label = torch.randint(0, 10, (4, ))
losses = head.loss(fake_cls_score, fake_gt_label)
assert losses['loss'].item() > 0
def test_multilabel_head():
head = MultiLabelClsHead()
fake_cls_score = torch.rand(4, 3)
fake_gt_label = torch.randint(0, 2, (4, 3))
losses = head.loss(fake_cls_score, fake_gt_label)
assert losses['loss'].item() > 0
def test_multilabel_linear_head():
head = MultiLabelLinearClsHead(3, 5)
fake_cls_score = torch.rand(4, 3)
fake_gt_label = torch.randint(0, 2, (4, 3))
head.init_weights()
losses = head.loss(fake_cls_score, fake_gt_label)
assert losses['loss'].item() > 0
def test_stacked_linear_cls_head():
# test assertion
with pytest.raises(AssertionError):
StackedLinearClsHead(num_classes=3, in_channels=5, mid_channels=10)
with pytest.raises(AssertionError):
StackedLinearClsHead(num_classes=-1, in_channels=5, mid_channels=[10])
fake_img = torch.rand(4, 5) # B, channel
fake_gt_label = torch.randint(0, 2, (4, )) # B, num_classes
# test forward with default setting
head = StackedLinearClsHead(
num_classes=3, in_channels=5, mid_channels=[10])
head.init_weights()
losses = head.forward_train(fake_img, fake_gt_label)
assert losses['loss'].item() > 0
# test simple test
pred = head.simple_test(fake_img)
assert len(pred) == 4
# test simple test in tracing
p = patch('torch.onnx.is_in_onnx_export', lambda: True)
p.start()
pred = head.simple_test(fake_img)
assert pred.shape == torch.Size((4, 3))
p.stop()
# test forward with full function
head = StackedLinearClsHead(
num_classes=3,
in_channels=5,
mid_channels=[8, 10],
dropout_rate=0.2,
norm_cfg=dict(type='BN1d'),
act_cfg=dict(type='HSwish'))
head.init_weights()
losses = head.forward_train(fake_img, fake_gt_label)
assert losses['loss'].item() > 0