mmpretrain/.dev_scripts/benchmark_regression/1-benchmark_valid.py

269 lines
9.6 KiB
Python

import logging
import re
import tempfile
from argparse import ArgumentParser
from collections import OrderedDict
from pathlib import Path
from time import time
import mmcv
import numpy as np
import torch
from mmengine import Config, DictAction, MMLogger
from mmengine.dataset import Compose, default_collate
from mmengine.fileio import FileClient
from mmengine.runner import Runner, load_checkpoint
from modelindex.load_model_index import load
from rich.console import Console
from rich.table import Table
from mmpretrain.apis import init_model
from mmpretrain.datasets import CIFAR10, CIFAR100, ImageNet
from mmpretrain.utils import register_all_modules
from mmpretrain.visualization import ClsVisualizer
console = Console()
MMCLS_ROOT = Path(__file__).absolute().parents[2]
classes_map = {
'ImageNet-1k': ImageNet.CLASSES,
'CIFAR-10': CIFAR10.CLASSES,
'CIFAR-100': CIFAR100.CLASSES,
}
def parse_args():
parser = ArgumentParser(description='Valid all models in model-index.yml')
parser.add_argument(
'--checkpoint-root',
help='Checkpoint file root path. If set, load checkpoint before test.')
parser.add_argument('--img', default='demo/demo.JPEG', help='Image file')
parser.add_argument('--models', nargs='+', help='models name to inference')
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument(
'--wait-time',
type=float,
default=1,
help='the interval of show (s), 0 is block')
parser.add_argument(
'--inference-time',
action='store_true',
help='Test inference time by run 10 times for each model.')
parser.add_argument(
'--batch-size',
type=int,
default=1,
help='The batch size during the inference.')
parser.add_argument(
'--flops', action='store_true', help='Get Flops and Params of models')
parser.add_argument(
'--flops-str',
action='store_true',
help='Output FLOPs and params counts in a string form.')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def inference(config_file, checkpoint, work_dir, args, exp_name):
cfg = Config.fromfile(config_file)
cfg.work_dir = work_dir
cfg.load_from = checkpoint
cfg.log_level = 'WARN'
cfg.experiment_name = exp_name
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
if 'test_dataloader' in cfg:
# build the data pipeline
test_dataset = cfg.test_dataloader.dataset
if test_dataset.pipeline[0]['type'] != 'LoadImageFromFile':
test_dataset.pipeline.insert(0, dict(type='LoadImageFromFile'))
if test_dataset.type in ['CIFAR10', 'CIFAR100']:
# The image shape of CIFAR is (32, 32, 3)
test_dataset.pipeline.insert(1, dict(type='Resize', scale=32))
data = Compose(test_dataset.pipeline)({'img_path': args.img})
data = default_collate([data] * args.batch_size)
resolution = tuple(data['inputs'].shape[-2:])
model = Runner.from_cfg(cfg).model
model.eval()
forward = model.val_step
else:
# For configs only for get model.
model = init_model(cfg)
model.eval()
data = torch.empty(1, 3, 224, 224).to(model.data_preprocessor.device)
resolution = (224, 224)
forward = model.extract_feat
if checkpoint is not None:
load_checkpoint(model, checkpoint, map_location='cpu')
# forward the model
result = {'resolution': resolution}
with torch.no_grad():
if args.inference_time:
time_record = []
for _ in range(10):
forward(data) # warmup before profiling
torch.cuda.synchronize()
start = time()
forward(data)
torch.cuda.synchronize()
time_record.append((time() - start) / args.batch_size * 1000)
result['time_mean'] = np.mean(time_record[1:-1])
result['time_std'] = np.std(time_record[1:-1])
else:
forward(data)
result['model'] = config_file.stem
if args.flops:
from fvcore.nn import FlopCountAnalysis, parameter_count
from fvcore.nn.print_model_statistics import _format_size
_format_size = _format_size if args.flops_str else lambda x: x
with torch.no_grad():
if hasattr(model, 'extract_feat'):
model.forward = model.extract_feat
model.to('cpu')
inputs = (torch.randn((1, 3, *resolution)), )
flops = _format_size(FlopCountAnalysis(model, inputs).total())
params = _format_size(parameter_count(model)[''])
result['flops'] = flops if args.flops_str else int(flops)
result['params'] = params if args.flops_str else int(params)
else:
result['flops'] = ''
result['params'] = ''
return result
def show_summary(summary_data, args):
table = Table(title='Validation Benchmark Regression Summary')
table.add_column('Model')
table.add_column('Validation')
table.add_column('Resolution (h, w)')
if args.inference_time:
table.add_column('Inference Time (std) (ms/im)')
if args.flops:
table.add_column('Flops', justify='right', width=13)
table.add_column('Params', justify='right', width=11)
for model_name, summary in summary_data.items():
row = [model_name]
valid = summary['valid']
color = 'green' if valid == 'PASS' else 'red'
row.append(f'[{color}]{valid}[/{color}]')
if valid == 'PASS':
row.append(str(summary['resolution']))
if args.inference_time:
time_mean = f"{summary['time_mean']:.2f}"
time_std = f"{summary['time_std']:.2f}"
row.append(f'{time_mean}\t({time_std})'.expandtabs(8))
if args.flops:
row.append(str(summary['flops']))
row.append(str(summary['params']))
table.add_row(*row)
console.print(table)
# Sample test whether the inference code is correct
def main(args):
register_all_modules()
model_index_file = MMCLS_ROOT / 'model-index.yml'
model_index = load(str(model_index_file))
model_index.build_models_with_collections()
models = OrderedDict({model.name: model for model in model_index.models})
logger = MMLogger(
'validation',
logger_name='validation',
log_file='benchmark_test_image.log',
log_level=logging.INFO)
if args.models:
patterns = [re.compile(pattern) for pattern in args.models]
filter_models = {}
for k, v in models.items():
if any([re.match(pattern, k) for pattern in patterns]):
filter_models[k] = v
if len(filter_models) == 0:
print('No model found, please specify models in:')
print('\n'.join(models.keys()))
return
models = filter_models
summary_data = {}
tmpdir = tempfile.TemporaryDirectory()
for model_name, model_info in models.items():
if model_info.config is None:
continue
config = Path(model_info.config)
assert config.exists(), f'{model_name}: {config} not found.'
logger.info(f'Processing: {model_name}')
http_prefix = 'https://download.openmmlab.com/mmclassification/'
if args.checkpoint_root is not None:
root = args.checkpoint_root
if 's3://' in args.checkpoint_root:
from petrel_client.common.exception import AccessDeniedError
file_client = FileClient.infer_client(uri=root)
checkpoint = file_client.join_path(
root, model_info.weights[len(http_prefix):])
try:
exists = file_client.exists(checkpoint)
except AccessDeniedError:
exists = False
else:
checkpoint = Path(root) / model_info.weights[len(http_prefix):]
exists = checkpoint.exists()
if exists:
checkpoint = str(checkpoint)
else:
print(f'WARNING: {model_name}: {checkpoint} not found.')
checkpoint = None
else:
checkpoint = None
try:
# build the model from a config file and a checkpoint file
result = inference(MMCLS_ROOT / config, checkpoint, tmpdir.name,
args, model_name)
result['valid'] = 'PASS'
except Exception:
import traceback
logger.error(f'"{config}" :\n{traceback.format_exc()}')
result = {'valid': 'FAIL'}
summary_data[model_name] = result
# show the results
if args.show:
vis = ClsVisualizer.get_instance('valid')
vis.set_image(mmcv.imread(args.img))
vis.draw_texts(
texts='\n'.join([f'{k}: {v}' for k, v in result.items()]),
positions=np.array([(5, 5)]))
vis.show(wait_time=args.wait_time)
tmpdir.cleanup()
show_summary(summary_data, args)
if __name__ == '__main__':
args = parse_args()
main(args)