197 lines
7.2 KiB
Python
197 lines
7.2 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import pickle
|
|
from typing import List, Optional
|
|
|
|
import mmengine.dist as dist
|
|
import numpy as np
|
|
from mmengine.fileio import (LocalBackend, exists, get, get_file_backend,
|
|
join_path)
|
|
|
|
from mmpretrain.registry import DATASETS
|
|
from .base_dataset import BaseDataset
|
|
from .categories import CIFAR10_CATEGORIES, CIFAR100_CATEGORIES
|
|
from .utils import check_md5, download_and_extract_archive
|
|
|
|
|
|
@DATASETS.register_module()
|
|
class CIFAR10(BaseDataset):
|
|
"""`CIFAR10 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
|
|
|
|
This implementation is modified from
|
|
https://github.com/pytorch/vision/blob/master/torchvision/datasets/cifar.py
|
|
|
|
Args:
|
|
data_prefix (str): Prefix for data.
|
|
test_mode (bool): ``test_mode=True`` means in test phase.
|
|
It determines to use the training set or test set.
|
|
metainfo (dict, optional): Meta information for dataset, such as
|
|
categories information. Defaults to None.
|
|
data_root (str): The root directory for ``data_prefix``.
|
|
Defaults to ''.
|
|
download (bool): Whether to download the dataset if not exists.
|
|
Defaults to True.
|
|
**kwargs: Other keyword arguments in :class:`BaseDataset`.
|
|
""" # noqa: E501
|
|
|
|
base_folder = 'cifar-10-batches-py'
|
|
url = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
|
|
filename = 'cifar-10-python.tar.gz'
|
|
tgz_md5 = 'c58f30108f718f92721af3b95e74349a'
|
|
train_list = [
|
|
['data_batch_1', 'c99cafc152244af753f735de768cd75f'],
|
|
['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'],
|
|
['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'],
|
|
['data_batch_4', '634d18415352ddfa80567beed471001a'],
|
|
['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'],
|
|
]
|
|
|
|
test_list = [
|
|
['test_batch', '40351d587109b95175f43aff81a1287e'],
|
|
]
|
|
meta = {
|
|
'filename': 'batches.meta',
|
|
'key': 'label_names',
|
|
'md5': '5ff9c542aee3614f3951f8cda6e48888',
|
|
}
|
|
METAINFO = {'classes': CIFAR10_CATEGORIES}
|
|
|
|
def __init__(self,
|
|
data_prefix: str,
|
|
test_mode: bool,
|
|
metainfo: Optional[dict] = None,
|
|
data_root: str = '',
|
|
download: bool = True,
|
|
**kwargs):
|
|
self.download = download
|
|
super().__init__(
|
|
# The CIFAR dataset doesn't need specify annotation file
|
|
ann_file='',
|
|
metainfo=metainfo,
|
|
data_root=data_root,
|
|
data_prefix=dict(root=data_prefix),
|
|
test_mode=test_mode,
|
|
**kwargs)
|
|
|
|
def load_data_list(self):
|
|
"""Load images and ground truth labels."""
|
|
root = self.data_prefix['root']
|
|
backend = get_file_backend(root, enable_singleton=True)
|
|
|
|
if dist.is_main_process() and not self._check_integrity():
|
|
if not isinstance(backend, LocalBackend):
|
|
raise RuntimeError(f'The dataset on {root} is not integrated, '
|
|
f'please manually handle it.')
|
|
|
|
if self.download:
|
|
download_and_extract_archive(
|
|
self.url, root, filename=self.filename, md5=self.tgz_md5)
|
|
else:
|
|
raise RuntimeError(
|
|
f'Cannot find {self.__class__.__name__} dataset in '
|
|
f"{self.data_prefix['root']}, you can specify "
|
|
'`download=True` to download automatically.')
|
|
|
|
dist.barrier()
|
|
assert self._check_integrity(), \
|
|
'Download failed or shared storage is unavailable. Please ' \
|
|
f'download the dataset manually through {self.url}.'
|
|
|
|
if not self.test_mode:
|
|
downloaded_list = self.train_list
|
|
else:
|
|
downloaded_list = self.test_list
|
|
|
|
imgs = []
|
|
gt_labels = []
|
|
|
|
# load the picked numpy arrays
|
|
for file_name, _ in downloaded_list:
|
|
file_path = join_path(root, self.base_folder, file_name)
|
|
entry = pickle.loads(get(file_path), encoding='latin1')
|
|
imgs.append(entry['data'])
|
|
if 'labels' in entry:
|
|
gt_labels.extend(entry['labels'])
|
|
else:
|
|
gt_labels.extend(entry['fine_labels'])
|
|
|
|
imgs = np.vstack(imgs).reshape(-1, 3, 32, 32)
|
|
imgs = imgs.transpose((0, 2, 3, 1)) # convert to HWC
|
|
|
|
if self.CLASSES is None:
|
|
# The metainfo in the file has the lowest priority, therefore
|
|
# we only need to load it if classes is not specified.
|
|
self._load_meta()
|
|
|
|
data_list = []
|
|
for img, gt_label in zip(imgs, gt_labels):
|
|
info = {'img': img, 'gt_label': int(gt_label)}
|
|
data_list.append(info)
|
|
return data_list
|
|
|
|
def _load_meta(self):
|
|
"""Load categories information from metafile."""
|
|
root = self.data_prefix['root']
|
|
|
|
path = join_path(root, self.base_folder, self.meta['filename'])
|
|
md5 = self.meta.get('md5', None)
|
|
if not exists(path) or (md5 is not None and not check_md5(path, md5)):
|
|
raise RuntimeError(
|
|
'Dataset metadata file not found or corrupted.' +
|
|
' You can use `download=True` to download it')
|
|
data = pickle.loads(get(path), encoding='latin1')
|
|
self._metainfo.setdefault('classes', data[self.meta['key']])
|
|
|
|
def _check_integrity(self):
|
|
"""Check the integrity of data files."""
|
|
root = self.data_prefix['root']
|
|
|
|
for fentry in (self.train_list + self.test_list):
|
|
filename, md5 = fentry[0], fentry[1]
|
|
fpath = join_path(root, self.base_folder, filename)
|
|
if not exists(fpath):
|
|
return False
|
|
if md5 is not None and not check_md5(fpath, md5):
|
|
return False
|
|
return True
|
|
|
|
def extra_repr(self) -> List[str]:
|
|
"""The extra repr information of the dataset."""
|
|
body = [f"Prefix of data: \t{self.data_prefix['root']}"]
|
|
return body
|
|
|
|
|
|
@DATASETS.register_module()
|
|
class CIFAR100(CIFAR10):
|
|
"""`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
|
|
|
|
Args:
|
|
data_prefix (str): Prefix for data.
|
|
test_mode (bool): ``test_mode=True`` means in test phase.
|
|
It determines to use the training set or test set.
|
|
metainfo (dict, optional): Meta information for dataset, such as
|
|
categories information. Defaults to None.
|
|
data_root (str): The root directory for ``data_prefix``.
|
|
Defaults to ''.
|
|
download (bool): Whether to download the dataset if not exists.
|
|
Defaults to True.
|
|
**kwargs: Other keyword arguments in :class:`BaseDataset`.
|
|
"""
|
|
|
|
base_folder = 'cifar-100-python'
|
|
url = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz'
|
|
filename = 'cifar-100-python.tar.gz'
|
|
tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85'
|
|
train_list = [
|
|
['train', '16019d7e3df5f24257cddd939b257f8d'],
|
|
]
|
|
|
|
test_list = [
|
|
['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'],
|
|
]
|
|
meta = {
|
|
'filename': 'meta',
|
|
'key': 'fine_label_names',
|
|
'md5': '7973b15100ade9c7d40fb424638fde48',
|
|
}
|
|
METAINFO = {'classes': CIFAR100_CATEGORIES}
|