307 lines
10 KiB
Python
307 lines
10 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import math
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.utils.checkpoint as cp
|
|
from mmcv.cnn import build_conv_layer, build_norm_layer
|
|
from mmengine.model import ModuleList, Sequential
|
|
|
|
from mmpretrain.registry import MODELS
|
|
from .resnet import Bottleneck as _Bottleneck
|
|
from .resnet import ResNet
|
|
|
|
|
|
class Bottle2neck(_Bottleneck):
|
|
expansion = 4
|
|
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
scales=4,
|
|
base_width=26,
|
|
base_channels=64,
|
|
stage_type='normal',
|
|
**kwargs):
|
|
"""Bottle2neck block for Res2Net."""
|
|
super(Bottle2neck, self).__init__(in_channels, out_channels, **kwargs)
|
|
assert scales > 1, 'Res2Net degenerates to ResNet when scales = 1.'
|
|
|
|
mid_channels = out_channels // self.expansion
|
|
width = int(math.floor(mid_channels * (base_width / base_channels)))
|
|
|
|
self.norm1_name, norm1 = build_norm_layer(
|
|
self.norm_cfg, width * scales, postfix=1)
|
|
self.norm3_name, norm3 = build_norm_layer(
|
|
self.norm_cfg, self.out_channels, postfix=3)
|
|
|
|
self.conv1 = build_conv_layer(
|
|
self.conv_cfg,
|
|
self.in_channels,
|
|
width * scales,
|
|
kernel_size=1,
|
|
stride=self.conv1_stride,
|
|
bias=False)
|
|
self.add_module(self.norm1_name, norm1)
|
|
|
|
if stage_type == 'stage':
|
|
self.pool = nn.AvgPool2d(
|
|
kernel_size=3, stride=self.conv2_stride, padding=1)
|
|
|
|
self.convs = ModuleList()
|
|
self.bns = ModuleList()
|
|
for i in range(scales - 1):
|
|
self.convs.append(
|
|
build_conv_layer(
|
|
self.conv_cfg,
|
|
width,
|
|
width,
|
|
kernel_size=3,
|
|
stride=self.conv2_stride,
|
|
padding=self.dilation,
|
|
dilation=self.dilation,
|
|
bias=False))
|
|
self.bns.append(
|
|
build_norm_layer(self.norm_cfg, width, postfix=i + 1)[1])
|
|
|
|
self.conv3 = build_conv_layer(
|
|
self.conv_cfg,
|
|
width * scales,
|
|
self.out_channels,
|
|
kernel_size=1,
|
|
bias=False)
|
|
self.add_module(self.norm3_name, norm3)
|
|
|
|
self.stage_type = stage_type
|
|
self.scales = scales
|
|
self.width = width
|
|
delattr(self, 'conv2')
|
|
delattr(self, self.norm2_name)
|
|
|
|
def forward(self, x):
|
|
"""Forward function."""
|
|
|
|
def _inner_forward(x):
|
|
identity = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.norm1(out)
|
|
out = self.relu(out)
|
|
|
|
spx = torch.split(out, self.width, 1)
|
|
sp = self.convs[0](spx[0].contiguous())
|
|
sp = self.relu(self.bns[0](sp))
|
|
out = sp
|
|
for i in range(1, self.scales - 1):
|
|
if self.stage_type == 'stage':
|
|
sp = spx[i]
|
|
else:
|
|
sp = sp + spx[i]
|
|
sp = self.convs[i](sp.contiguous())
|
|
sp = self.relu(self.bns[i](sp))
|
|
out = torch.cat((out, sp), 1)
|
|
|
|
if self.stage_type == 'normal' and self.scales != 1:
|
|
out = torch.cat((out, spx[self.scales - 1]), 1)
|
|
elif self.stage_type == 'stage' and self.scales != 1:
|
|
out = torch.cat((out, self.pool(spx[self.scales - 1])), 1)
|
|
|
|
out = self.conv3(out)
|
|
out = self.norm3(out)
|
|
|
|
if self.downsample is not None:
|
|
identity = self.downsample(x)
|
|
|
|
out += identity
|
|
|
|
return out
|
|
|
|
if self.with_cp and x.requires_grad:
|
|
out = cp.checkpoint(_inner_forward, x)
|
|
else:
|
|
out = _inner_forward(x)
|
|
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class Res2Layer(Sequential):
|
|
"""Res2Layer to build Res2Net style backbone.
|
|
|
|
Args:
|
|
block (nn.Module): block used to build ResLayer.
|
|
inplanes (int): inplanes of block.
|
|
planes (int): planes of block.
|
|
num_blocks (int): number of blocks.
|
|
stride (int): stride of the first block. Default: 1
|
|
avg_down (bool): Use AvgPool instead of stride conv when
|
|
downsampling in the bottle2neck. Defaults to True.
|
|
conv_cfg (dict): dictionary to construct and config conv layer.
|
|
Default: None
|
|
norm_cfg (dict): dictionary to construct and config norm layer.
|
|
Default: dict(type='BN')
|
|
scales (int): Scales used in Res2Net. Default: 4
|
|
base_width (int): Basic width of each scale. Default: 26
|
|
"""
|
|
|
|
def __init__(self,
|
|
block,
|
|
in_channels,
|
|
out_channels,
|
|
num_blocks,
|
|
stride=1,
|
|
avg_down=True,
|
|
conv_cfg=None,
|
|
norm_cfg=dict(type='BN'),
|
|
scales=4,
|
|
base_width=26,
|
|
**kwargs):
|
|
self.block = block
|
|
|
|
downsample = None
|
|
if stride != 1 or in_channels != out_channels:
|
|
if avg_down:
|
|
downsample = nn.Sequential(
|
|
nn.AvgPool2d(
|
|
kernel_size=stride,
|
|
stride=stride,
|
|
ceil_mode=True,
|
|
count_include_pad=False),
|
|
build_conv_layer(
|
|
conv_cfg,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
bias=False),
|
|
build_norm_layer(norm_cfg, out_channels)[1],
|
|
)
|
|
else:
|
|
downsample = nn.Sequential(
|
|
build_conv_layer(
|
|
conv_cfg,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size=1,
|
|
stride=stride,
|
|
bias=False),
|
|
build_norm_layer(norm_cfg, out_channels)[1],
|
|
)
|
|
|
|
layers = []
|
|
layers.append(
|
|
block(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
stride=stride,
|
|
downsample=downsample,
|
|
conv_cfg=conv_cfg,
|
|
norm_cfg=norm_cfg,
|
|
scales=scales,
|
|
base_width=base_width,
|
|
stage_type='stage',
|
|
**kwargs))
|
|
in_channels = out_channels
|
|
for _ in range(1, num_blocks):
|
|
layers.append(
|
|
block(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
stride=1,
|
|
conv_cfg=conv_cfg,
|
|
norm_cfg=norm_cfg,
|
|
scales=scales,
|
|
base_width=base_width,
|
|
**kwargs))
|
|
super(Res2Layer, self).__init__(*layers)
|
|
|
|
|
|
@MODELS.register_module()
|
|
class Res2Net(ResNet):
|
|
"""Res2Net backbone.
|
|
|
|
A PyTorch implement of : `Res2Net: A New Multi-scale Backbone
|
|
Architecture <https://arxiv.org/pdf/1904.01169.pdf>`_
|
|
|
|
Args:
|
|
depth (int): Depth of Res2Net, choose from {50, 101, 152}.
|
|
scales (int): Scales used in Res2Net. Defaults to 4.
|
|
base_width (int): Basic width of each scale. Defaults to 26.
|
|
in_channels (int): Number of input image channels. Defaults to 3.
|
|
num_stages (int): Number of Res2Net stages. Defaults to 4.
|
|
strides (Sequence[int]): Strides of the first block of each stage.
|
|
Defaults to ``(1, 2, 2, 2)``.
|
|
dilations (Sequence[int]): Dilation of each stage.
|
|
Defaults to ``(1, 1, 1, 1)``.
|
|
out_indices (Sequence[int]): Output from which stages.
|
|
Defaults to ``(3, )``.
|
|
style (str): "pytorch" or "caffe". If set to "pytorch", the stride-two
|
|
layer is the 3x3 conv layer, otherwise the stride-two layer is
|
|
the first 1x1 conv layer. Defaults to "pytorch".
|
|
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv.
|
|
Defaults to True.
|
|
avg_down (bool): Use AvgPool instead of stride conv when
|
|
downsampling in the bottle2neck. Defaults to True.
|
|
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
|
-1 means not freezing any parameters. Defaults to -1.
|
|
norm_cfg (dict): Dictionary to construct and config norm layer.
|
|
Defaults to ``dict(type='BN', requires_grad=True)``.
|
|
norm_eval (bool): Whether to set norm layers to eval mode, namely,
|
|
freeze running stats (mean and var). Note: Effect on Batch Norm
|
|
and its variants only. Defaults to False.
|
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
|
|
memory while slowing down the training speed. Defaults to False.
|
|
zero_init_residual (bool): Whether to use zero init for last norm layer
|
|
in resblocks to let them behave as identity. Defaults to True.
|
|
init_cfg (dict or list[dict], optional): Initialization config dict.
|
|
Defaults to None.
|
|
|
|
Example:
|
|
>>> from mmpretrain.models import Res2Net
|
|
>>> import torch
|
|
>>> model = Res2Net(depth=50,
|
|
... scales=4,
|
|
... base_width=26,
|
|
... out_indices=(0, 1, 2, 3))
|
|
>>> model.eval()
|
|
>>> inputs = torch.rand(1, 3, 32, 32)
|
|
>>> level_outputs = model.forward(inputs)
|
|
>>> for level_out in level_outputs:
|
|
... print(tuple(level_out.shape))
|
|
(1, 256, 8, 8)
|
|
(1, 512, 4, 4)
|
|
(1, 1024, 2, 2)
|
|
(1, 2048, 1, 1)
|
|
"""
|
|
|
|
arch_settings = {
|
|
50: (Bottle2neck, (3, 4, 6, 3)),
|
|
101: (Bottle2neck, (3, 4, 23, 3)),
|
|
152: (Bottle2neck, (3, 8, 36, 3))
|
|
}
|
|
|
|
def __init__(self,
|
|
scales=4,
|
|
base_width=26,
|
|
style='pytorch',
|
|
deep_stem=True,
|
|
avg_down=True,
|
|
init_cfg=None,
|
|
**kwargs):
|
|
self.scales = scales
|
|
self.base_width = base_width
|
|
super(Res2Net, self).__init__(
|
|
style=style,
|
|
deep_stem=deep_stem,
|
|
avg_down=avg_down,
|
|
init_cfg=init_cfg,
|
|
**kwargs)
|
|
|
|
def make_res_layer(self, **kwargs):
|
|
return Res2Layer(
|
|
scales=self.scales,
|
|
base_width=self.base_width,
|
|
base_channels=self.base_channels,
|
|
**kwargs)
|