mmpretrain/configs/wrn/metafile.yml

78 lines
2.8 KiB
YAML

Collections:
- Name: Wide-ResNet
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Epochs: 100
Batch Size: 256
Architecture:
- 1x1 Convolution
- Batch Normalization
- Convolution
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Connection
- Softmax
- Wide Residual Block
Paper:
URL: https://arxiv.org/abs/1605.07146
Title: "Wide Residual Networks"
README: configs/wrn/README.md
Code:
URL: https://github.com/open-mmlab/mmpretrain/blob/v0.20.1/mmcls/models/backbones/resnet.py#L383
Version: v0.20.1
Models:
- Name: wide-resnet50_3rdparty_8xb32_in1k
Metadata:
FLOPs: 11440000000 # 11.44G
Parameters: 68880000 # 68.88M
In Collection: Wide-ResNet
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 78.48
Top 5 Accuracy: 94.08
Weights: https://download.openmmlab.com/mmclassification/v0/wrn/wide-resnet50_3rdparty_8xb32_in1k_20220304-66678344.pth
Config: configs/wrn/wide-resnet50_8xb32_in1k.py
Converted From:
Weights: https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth
Code: https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
- Name: wide-resnet101_3rdparty_8xb32_in1k
Metadata:
FLOPs: 22810000000 # 22.81G
Parameters: 126890000 # 126.89M
In Collection: Wide-ResNet
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 78.84
Top 5 Accuracy: 94.28
Weights: https://download.openmmlab.com/mmclassification/v0/wrn/wide-resnet101_3rdparty_8xb32_in1k_20220304-8d5f9d61.pth
Config: configs/wrn/wide-resnet101_8xb32_in1k.py
Converted From:
Weights: https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth
Code: https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
- Name: wide-resnet50_3rdparty-timm_8xb32_in1k
Metadata:
FLOPs: 11440000000 # 11.44G
Parameters: 68880000 # 68.88M
In Collection: Wide-ResNet
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 81.45
Top 5 Accuracy: 95.53
Weights: https://download.openmmlab.com/mmclassification/v0/wrn/wide-resnet50_3rdparty-timm_8xb32_in1k_20220304-83ae4399.pth
Config: configs/wrn/wide-resnet50_timm_8xb32_in1k.py
Converted From:
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/wide_resnet50_racm-8234f177.pth
Code: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/resnet.py