mirror of
https://github.com/open-mmlab/mmpretrain.git
synced 2025-06-03 14:59:18 +08:00
* [Feat] Migrate blip caption to mmpretrain. (#50) * Migrate blip caption to mmpretrain * minor fix * support train * [Feature] Support OFA caption task. (#51) * [Feature] Support OFA caption task. * Remove duplicated files. * [Feature] Support OFA vqa task. (#58) * [Feature] Support OFA vqa task. * Fix lint. * [Feat] Add BLIP retrieval to mmpretrain. (#55) * init * minor fix for train * fix according to comments * refactor * Update Blip retrieval. (#62) * [Feature] Support OFA visual grounding task. (#59) * [Feature] Support OFA visual grounding task. * minor add TODO --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Add flamingos coco caption and vqa. (#60) * first init * init flamingo coco * add vqa * minor fix * remove unnecessary modules * Update config * Use `ApplyToList`. --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 coco retrieval (#53) * [Feature]: Add blip2 retriever * [Feature]: Add blip2 all modules * [Feature]: Refine model * [Feature]: x1 * [Feature]: Runnable coco ret * [Feature]: Runnable version * [Feature]: Fix lint * [Fix]: Fix lint * [Feature]: Use 364 img size * [Feature]: Refactor blip2 * [Fix]: Fix lint * refactor files * minor fix * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Remove * fix blip caption inputs (#68) * [Feat] Add BLIP NLVR support. (#67) * first init * init flamingo coco * add vqa * add nlvr * refactor nlvr * minor fix * minor fix * Update dataset --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 Caption (#70) * [Feature]: Add language model * [Feature]: blip2 caption forward * [Feature]: Reproduce the results * [Feature]: Refactor caption * refine config --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Migrate BLIP VQA to mmpretrain (#69) * reformat * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * refactor code --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Update RefCOCO dataset * [Fix] fix lint * [Feature] Implement inference APIs for multi-modal tasks. (#65) * [Feature] Implement inference APIs for multi-modal tasks. * [Project] Add gradio demo. * [Improve] Update requirements * Update flamingo * Update blip * Add NLVR inferencer * Update flamingo * Update hugging face model register * Update ofa vqa * Update BLIP-vqa (#71) * Update blip-vqa docstring (#72) * Refine flamingo docstring (#73) * [Feature]: BLIP2 VQA (#61) * [Feature]: VQA forward * [Feature]: Reproduce accuracy * [Fix]: Fix lint * [Fix]: Add blank line * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feature]: BLIP2 docstring (#74) * [Feature]: Add caption docstring * [Feature]: Add docstring to blip2 vqa * [Feature]: Add docstring to retrieval * Update BLIP-2 metafile and README (#75) * [Feature]: Add readme and docstring * Update blip2 results --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature] BLIP Visual Grounding on MMPretrain Branch (#66) * blip grounding merge with mmpretrain * remove commit * blip grounding test and inference api * refcoco dataset * refcoco dataset refine config * rebasing * gitignore * rebasing * minor edit * minor edit * Update blip-vqa docstring (#72) * rebasing * Revert "minor edit" This reverts commit 639cec757c215e654625ed0979319e60f0be9044. * blip grounding final * precommit * refine config * refine config * Update blip visual grounding --------- Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: mzr1996 <mzr1996@163.com> * Update visual grounding metric * Update OFA docstring, README and metafiles. (#76) * [Docs] Update installation docs and gradio demo docs. (#77) * Update OFA name * Update Visual Grounding Visualizer * Integrate accelerate support * Fix imports. * Fix timm backbone * Update imports * Update README * Update circle ci * Update flamingo config * Add gradio demo README * [Feature]: Add scienceqa (#1571) * [Feature]: Add scienceqa * [Feature]: Change param name * Update docs * Update video --------- Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com> Co-authored-by: yingfhu <yingfhu@gmail.com> Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: Rongjie Li <limo97@163.com>
48 lines
5.5 KiB
Markdown
48 lines
5.5 KiB
Markdown
# NPU (HUAWEI Ascend)
|
|
|
|
## Usage
|
|
|
|
### General Usage
|
|
|
|
Please refer to the [building documentation of MMCV](https://mmcv.readthedocs.io/en/latest/get_started/build.html#build-mmcv-full-on-ascend-npu-machine) to install MMCV and [MMEngine](https://mmengine.readthedocs.io/en/latest/get_started/installation.html#build-from-source) on NPU devices.
|
|
|
|
Here we use 8 NPUs on your computer to train the model with the following command:
|
|
|
|
```shell
|
|
bash ./tools/dist_train.sh configs/resnet/resnet50_8xb32_in1k.py 8
|
|
```
|
|
|
|
Also, you can use only one NPU to train the model with the following command:
|
|
|
|
```shell
|
|
python ./tools/train.py configs/resnet/resnet50_8xb32_in1k.py
|
|
```
|
|
|
|
## Models Results
|
|
|
|
| Model | Top-1 (%) | Top-5 (%) | Config | Download |
|
|
| :---------------------------------------------------------: | :-------: | :-------: | :----------------------------------------------------------: | :-------------------------------------------------------------: |
|
|
| [ResNet-50](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/resnet/README.md) | 76.40 | 93.21 | [config](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/resnet/resnet50_8xb32_in1k.py) | [log](https://download.openmmlab.com/mmclassification/v1/device/npu/resnet50_8xb32_in1k.log) |
|
|
| [ResNetXt-32x4d-50](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/resnext/README.md) | 77.48 | 93.75 | [config](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/resnext/resnext50-32x4d_8xb32_in1k.py) | [log](https://download.openmmlab.com/mmclassification/v1/device/npu/resnext50-32x4d_8xb32_in1k.log) |
|
|
| [HRNet-W18](https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/README.md) | 77.06 | 93.57 | [config](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/hrnet/hrnet-w18_4xb32_in1k.py) | [log](https://download.openmmlab.com/mmclassification/v1/device/npu/hrnet-w18_4xb32_in1k.log) |
|
|
| [ResNetV1D-152](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/resnet/README.md) | 79.41 | 94.48 | [config](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/resnet/resnetv1d152_8xb32_in1k.py) | [log](https://download.openmmlab.com/mmclassification/v1/device/npu/resnetv1d152_8xb32_in1k.log) |
|
|
| [SE-ResNet-50](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/seresnet/README.md) | 77.65 | 93.74 | [config](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/seresnet/seresnet50_8xb32_in1k.py) | [log](https://download.openmmlab.com/mmclassification/v1/device/npu/seresnet50_8xb32_in1k.log) |
|
|
| [ShuffleNetV2 1.0x](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/shufflenet_v2/README.md) | 69.52 | 88.79 | [config](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/shufflenet_v2/shufflenet-v2-1x_16xb64_in1k.py) | [log](https://download.openmmlab.com/mmclassification/v1/device/npu/shufflenet-v2-1x_16xb64_in1k.log) |
|
|
| [MobileNetV2](https://github.com/open-mmlab/mmclassification/tree/1.x/configs/mobilenet_v2) | 71.74 | 90.28 | [config](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py) | [log](https://download.openmmlab.com/mmclassification/v1/device/npu/mobilenet-v2_8xb32_in1k.log) |
|
|
| [MobileNetV3-Small](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/mobilenet_v3/README.md) | 67.09 | 87.17 | [config](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/mobilenet_v3/mobilenet-v3-small_8xb128_in1k.py) | [log](https://download.openmmlab.com/mmclassification/v1/device/npu/mobilenet-v3-small.log) |
|
|
| [\*CSPResNeXt50](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/cspnet/README.md) | 77.25 | 93.46 | [config](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/cspnet/cspresnext50_8xb32_in1k.py) | [log](https://download.openmmlab.com/mmclassification/v1/device/npu/cspresnext50_8xb32_in1k.log) |
|
|
| [\*EfficientNet-B4](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/efficientnet/README.md) | 75.73 | 92.91 | [config](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/efficientnet/efficientnet-b4_8xb32_in1k.py) | [log](https://download.openmmlab.com/mmclassification/v1/device/npu/efficientnet-b4_8xb32_in1k.log) |
|
|
| [\*\*DenseNet121](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/densenet/README.md) | 72.53 | 90.85 | [config](https://github.com/open-mmlab/mmclassification/blob/1.x/configs/densenet/densenet121_4xb256_in1k.py) | [log](https://download.openmmlab.com/mmclassification/v1/device/npu/densenet121_4xb256_in1k.log) |
|
|
|
|
**Notes:**
|
|
|
|
- If not specially marked, the results are almost same between results on the NPU and results on the GPU with FP32.
|
|
- (\*) The training results of these models are lower than the results on the readme in the corresponding model, mainly
|
|
because the results on the readme are directly the weight of the timm of the eval, and the results on this side are
|
|
retrained according to the config with mmcls. The results of the config training on the GPU are consistent with the
|
|
results of the NPU.
|
|
- (\*\*) The accuracy of this model is slightly lower because config is a 4-card config, we use 8 cards to run, and users
|
|
can adjust hyperparameters to get the best accuracy results.
|
|
|
|
**All above models are provided by Huawei Ascend group.**
|