mirror of
https://github.com/open-mmlab/mmpretrain.git
synced 2025-06-03 14:59:18 +08:00
* add config for resnest test * fix config * add label smoothing * add memcached * minor fix * fix bug * fix config * add config * minor fix * fix configs * use EResize * change interpolation * add more configs * add docsting * add unittest * remove unnecessary changes * minor fix * add more docstring * fix linting * add efficient backbone * add config * add Edge Residual * fix bug * remove unnecessary files * refactor * add resize in crop to ensure crop size is output size * fix bug and add comments * test * fix * add more configs * add more configs * add more configs * fix bug * add model zoo * fix * reorganize code * add edge tpu * add edge tpu converter * rename * update readme * reorganize code and config * Rename configs of EfficientNet, and add metafile & model_zoo * Remove `backend='pillow'` * Add comments about EfficientNet-EdgeTPU * Rename the convert tool of EfficientNet. * Refactor EfficientNet and update docstring. * Update EfficientNet-EdgeTPU config * Fix unit tests Co-authored-by: lixinran <lixr423@outlook.com> Co-authored-by: lixinran <lixinran@sensetime.com> Co-authored-by: mzr1996 <mzr1996@163.com>
40 lines
1.2 KiB
Python
40 lines
1.2 KiB
Python
_base_ = [
|
|
'../_base_/models/efficientnet_b0.py',
|
|
'../_base_/datasets/imagenet_bs32.py',
|
|
'../_base_/schedules/imagenet_bs256.py',
|
|
'../_base_/default_runtime.py',
|
|
]
|
|
|
|
# dataset settings
|
|
dataset_type = 'ImageNet'
|
|
img_norm_cfg = dict(
|
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='RandomResizedCrop',
|
|
size=224,
|
|
efficientnet_style=True,
|
|
interpolation='bicubic'),
|
|
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='ImageToTensor', keys=['img']),
|
|
dict(type='ToTensor', keys=['gt_label']),
|
|
dict(type='Collect', keys=['img', 'gt_label'])
|
|
]
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='CenterCrop',
|
|
crop_size=224,
|
|
efficientnet_style=True,
|
|
interpolation='bicubic'),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='ImageToTensor', keys=['img']),
|
|
dict(type='Collect', keys=['img'])
|
|
]
|
|
data = dict(
|
|
train=dict(pipeline=train_pipeline),
|
|
val=dict(pipeline=test_pipeline),
|
|
test=dict(pipeline=test_pipeline))
|