mmpretrain/tests/test_models/test_backbones/test_efficientnet.py

145 lines
5.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.models.backbones import EfficientNet
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_efficientnet_backbone():
archs = ['b0', 'b1', 'b2', 'b3', 'b4', 'b5', 'b7', 'b8', 'es', 'em', 'el']
with pytest.raises(TypeError):
# pretrained must be a string path
model = EfficientNet()
model.init_weights(pretrained=0)
with pytest.raises(AssertionError):
# arch must in arc_settings
EfficientNet(arch='others')
for arch in archs:
with pytest.raises(ValueError):
# frozen_stages must less than 7
EfficientNet(arch=arch, frozen_stages=12)
# Test EfficientNet
model = EfficientNet()
model.init_weights()
model.train()
# Test EfficientNet with first stage frozen
frozen_stages = 7
model = EfficientNet(arch='b0', frozen_stages=frozen_stages)
model.init_weights()
model.train()
for i in range(frozen_stages):
layer = model.layers[i]
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test EfficientNet with norm eval
model = EfficientNet(norm_eval=True)
model.init_weights()
model.train()
assert check_norm_state(model.modules(), False)
# Test EfficientNet forward with 'b0' arch
out_channels = [32, 16, 24, 40, 112, 320, 1280]
model = EfficientNet(arch='b0', out_indices=(0, 1, 2, 3, 4, 5, 6))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size([1, out_channels[0], 112, 112])
assert feat[1].shape == torch.Size([1, out_channels[1], 112, 112])
assert feat[2].shape == torch.Size([1, out_channels[2], 56, 56])
assert feat[3].shape == torch.Size([1, out_channels[3], 28, 28])
assert feat[4].shape == torch.Size([1, out_channels[4], 14, 14])
assert feat[5].shape == torch.Size([1, out_channels[5], 7, 7])
assert feat[6].shape == torch.Size([1, out_channels[6], 7, 7])
# Test EfficientNet forward with 'b0' arch and GroupNorm
out_channels = [32, 16, 24, 40, 112, 320, 1280]
model = EfficientNet(
arch='b0',
out_indices=(0, 1, 2, 3, 4, 5, 6),
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True))
for m in model.modules():
if is_norm(m):
assert isinstance(m, GroupNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size([1, out_channels[0], 112, 112])
assert feat[1].shape == torch.Size([1, out_channels[1], 112, 112])
assert feat[2].shape == torch.Size([1, out_channels[2], 56, 56])
assert feat[3].shape == torch.Size([1, out_channels[3], 28, 28])
assert feat[4].shape == torch.Size([1, out_channels[4], 14, 14])
assert feat[5].shape == torch.Size([1, out_channels[5], 7, 7])
assert feat[6].shape == torch.Size([1, out_channels[6], 7, 7])
# Test EfficientNet forward with 'es' arch
out_channels = [32, 24, 32, 48, 144, 192, 1280]
model = EfficientNet(arch='es', out_indices=(0, 1, 2, 3, 4, 5, 6))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size([1, out_channels[0], 112, 112])
assert feat[1].shape == torch.Size([1, out_channels[1], 112, 112])
assert feat[2].shape == torch.Size([1, out_channels[2], 56, 56])
assert feat[3].shape == torch.Size([1, out_channels[3], 28, 28])
assert feat[4].shape == torch.Size([1, out_channels[4], 14, 14])
assert feat[5].shape == torch.Size([1, out_channels[5], 7, 7])
assert feat[6].shape == torch.Size([1, out_channels[6], 7, 7])
# Test EfficientNet forward with 'es' arch and GroupNorm
out_channels = [32, 24, 32, 48, 144, 192, 1280]
model = EfficientNet(
arch='es',
out_indices=(0, 1, 2, 3, 4, 5, 6),
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True))
for m in model.modules():
if is_norm(m):
assert isinstance(m, GroupNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size([1, out_channels[0], 112, 112])
assert feat[1].shape == torch.Size([1, out_channels[1], 112, 112])
assert feat[2].shape == torch.Size([1, out_channels[2], 56, 56])
assert feat[3].shape == torch.Size([1, out_channels[3], 28, 28])
assert feat[4].shape == torch.Size([1, out_channels[4], 14, 14])
assert feat[5].shape == torch.Size([1, out_channels[5], 7, 7])
assert feat[6].shape == torch.Size([1, out_channels[6], 7, 7])