mmpretrain/tests/test_models/test_backbones/test_van.py

189 lines
6.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import math
from copy import deepcopy
from itertools import chain
from unittest import TestCase
import torch
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm
from torch import nn
from mmcls.models.backbones import VAN
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
class TestVAN(TestCase):
def setUp(self):
self.cfg = dict(arch='t', drop_path_rate=0.1)
def test_arch(self):
# Test invalid default arch
with self.assertRaisesRegex(AssertionError, 'not in default archs'):
cfg = deepcopy(self.cfg)
cfg['arch'] = 'unknown'
VAN(**cfg)
# Test invalid custom arch
with self.assertRaisesRegex(AssertionError, 'Custom arch needs'):
cfg = deepcopy(self.cfg)
cfg['arch'] = {
'embed_dims': [32, 64, 160, 256],
'ffn_ratios': [8, 8, 4, 4],
}
VAN(**cfg)
# Test custom arch
cfg = deepcopy(self.cfg)
embed_dims = [32, 64, 160, 256]
depths = [3, 3, 5, 2]
ffn_ratios = [8, 8, 4, 4]
cfg['arch'] = {
'embed_dims': embed_dims,
'depths': depths,
'ffn_ratios': ffn_ratios
}
model = VAN(**cfg)
for i in range(len(depths)):
stage = getattr(model, f'blocks{i + 1}')
self.assertEqual(stage[-1].out_channels, embed_dims[i])
self.assertEqual(len(stage), depths[i])
def test_init_weights(self):
# test weight init cfg
cfg = deepcopy(self.cfg)
cfg['init_cfg'] = [
dict(
type='Kaiming',
layer='Conv2d',
mode='fan_in',
nonlinearity='linear')
]
model = VAN(**cfg)
ori_weight = model.patch_embed1.projection.weight.clone().detach()
model.init_weights()
initialized_weight = model.patch_embed1.projection.weight
self.assertFalse(torch.allclose(ori_weight, initialized_weight))
def test_forward(self):
imgs = torch.randn(3, 3, 224, 224)
cfg = deepcopy(self.cfg)
model = VAN(**cfg)
outs = model(imgs)
self.assertIsInstance(outs, tuple)
self.assertEqual(len(outs), 1)
feat = outs[-1]
self.assertEqual(feat.shape, (3, 256, 7, 7))
# test with patch_sizes
cfg = deepcopy(self.cfg)
cfg['patch_sizes'] = [7, 5, 5, 5]
model = VAN(**cfg)
outs = model(torch.randn(3, 3, 224, 224))
self.assertIsInstance(outs, tuple)
self.assertEqual(len(outs), 1)
feat = outs[-1]
self.assertEqual(feat.shape, (3, 256, 3, 3))
# test multiple output indices
cfg = deepcopy(self.cfg)
cfg['out_indices'] = (0, 1, 2, 3)
model = VAN(**cfg)
outs = model(imgs)
self.assertIsInstance(outs, tuple)
self.assertEqual(len(outs), 4)
for emb_size, stride, out in zip([32, 64, 160, 256], [1, 2, 4, 8],
outs):
self.assertEqual(out.shape,
(3, emb_size, 56 // stride, 56 // stride))
# test with dynamic input shape
imgs1 = torch.randn(3, 3, 224, 224)
imgs2 = torch.randn(3, 3, 256, 256)
imgs3 = torch.randn(3, 3, 256, 309)
cfg = deepcopy(self.cfg)
model = VAN(**cfg)
for imgs in [imgs1, imgs2, imgs3]:
outs = model(imgs)
self.assertIsInstance(outs, tuple)
self.assertEqual(len(outs), 1)
feat = outs[-1]
expect_feat_shape = (math.ceil(imgs.shape[2] / 32),
math.ceil(imgs.shape[3] / 32))
self.assertEqual(feat.shape, (3, 256, *expect_feat_shape))
def test_structure(self):
# test drop_path_rate decay
cfg = deepcopy(self.cfg)
cfg['drop_path_rate'] = 0.2
model = VAN(**cfg)
depths = model.arch_settings['depths']
stages = [model.blocks1, model.blocks2, model.blocks3, model.blocks4]
blocks = chain(*[stage for stage in stages])
total_depth = sum(depths)
dpr = [
x.item()
for x in torch.linspace(0, cfg['drop_path_rate'], total_depth)
]
for i, (block, expect_prob) in enumerate(zip(blocks, dpr)):
if expect_prob == 0:
assert isinstance(block.drop_path, nn.Identity)
else:
self.assertAlmostEqual(block.drop_path.drop_prob, expect_prob)
# test VAN with norm_eval=True
cfg = deepcopy(self.cfg)
cfg['norm_eval'] = True
cfg['norm_cfg'] = dict(type='BN')
model = VAN(**cfg)
model.init_weights()
model.train()
self.assertTrue(check_norm_state(model.modules(), False))
# test VAN with first stage frozen.
cfg = deepcopy(self.cfg)
frozen_stages = 0
cfg['frozen_stages'] = frozen_stages
cfg['out_indices'] = (0, 1, 2, 3)
model = VAN(**cfg)
model.init_weights()
model.train()
# the patch_embed and first stage should not require grad.
self.assertFalse(model.patch_embed1.training)
for param in model.patch_embed1.parameters():
self.assertFalse(param.requires_grad)
for i in range(frozen_stages + 1):
patch = getattr(model, f'patch_embed{i+1}')
for param in patch.parameters():
self.assertFalse(param.requires_grad)
blocks = getattr(model, f'blocks{i + 1}')
for param in blocks.parameters():
self.assertFalse(param.requires_grad)
norm = getattr(model, f'norm{i + 1}')
for param in norm.parameters():
self.assertFalse(param.requires_grad)
# the second stage should require grad.
for i in range(frozen_stages + 1, 4):
patch = getattr(model, f'patch_embed{i + 1}')
for param in patch.parameters():
self.assertTrue(param.requires_grad)
blocks = getattr(model, f'blocks{i+1}')
for param in blocks.parameters():
self.assertTrue(param.requires_grad)
norm = getattr(model, f'norm{i + 1}')
for param in norm.parameters():
self.assertTrue(param.requires_grad)