mmpretrain/tools/model_converters/mixmimx_to_mmcls.py

99 lines
2.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
from collections import OrderedDict
import mmengine
import torch
from mmengine.runner import CheckpointLoader
def correct_unfold_reduction_order(x: torch.Tensor):
out_channel, in_channel = x.shape
x = x.reshape(out_channel, 4, in_channel // 4)
x = x[:, [0, 2, 1, 3], :].transpose(1, 2).reshape(out_channel, in_channel)
return x
def correct_unfold_norm_order(x):
in_channel = x.shape[0]
x = x.reshape(4, in_channel // 4)
x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel)
return x
def convert_mixmim(ckpt):
new_ckpt = OrderedDict()
for k, v in list(ckpt.items()):
new_v = v
if k.startswith('patch_embed'):
new_k = k.replace('proj', 'projection')
elif k.startswith('layers'):
if 'norm1' in k:
new_k = k.replace('norm1', 'ln1')
elif 'norm2' in k:
new_k = k.replace('norm2', 'ln2')
elif 'mlp.fc1' in k:
new_k = k.replace('mlp.fc1', 'ffn.layers.0.0')
elif 'mlp.fc2' in k:
new_k = k.replace('mlp.fc2', 'ffn.layers.1')
else:
new_k = k
elif k.startswith('norm') or k.startswith('absolute_pos_embed'):
new_k = k
elif k.startswith('head'):
new_k = k.replace('head.', 'head.fc.')
else:
raise ValueError
# print(new_k)
if not new_k.startswith('head'):
new_k = 'backbone.' + new_k
if 'downsample' in new_k:
print('Covert {} in PatchMerging from timm to mmcv format!'.format(
new_k))
if 'reduction' in new_k:
new_v = correct_unfold_reduction_order(new_v)
elif 'norm' in new_k:
new_v = correct_unfold_norm_order(new_v)
new_ckpt[new_k] = new_v
return new_ckpt
def main():
parser = argparse.ArgumentParser(
description='Convert keys in pretrained van models to mmcls style.')
parser.add_argument('src', help='src model path or url')
# The dst path must be a full path of the new checkpoint.
parser.add_argument('dst', help='save path')
args = parser.parse_args()
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu')
if 'model' in checkpoint:
state_dict = checkpoint['model']
else:
state_dict = checkpoint
weight = convert_mixmim(state_dict)
# weight = convert_official_mixmim(state_dict)
mmengine.mkdir_or_exist(osp.dirname(args.dst))
torch.save(weight, args.dst)
print('Done!!')
if __name__ == '__main__':
main()