27 lines
1.0 KiB
Docker
27 lines
1.0 KiB
Docker
ARG PYTORCH="1.12.1"
|
|
ARG CUDA="11.3"
|
|
ARG CUDNN="8"
|
|
|
|
FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel
|
|
|
|
# fetch the key refer to https://forums.developer.nvidia.com/t/18-04-cuda-docker-image-is-broken/212892/9
|
|
RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub 32
|
|
RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/7fa2af80.pub
|
|
|
|
ENV TORCH_CUDA_ARCH_LIST="6.0 6.1 7.0+PTX"
|
|
ENV TORCH_NVCC_FLAGS="-Xfatbin -compress-all"
|
|
ENV CMAKE_PREFIX_PATH="(dirname(which conda))/../"
|
|
|
|
RUN apt-get update && apt-get install -y ffmpeg libsm6 libxext6 git ninja-build libglib2.0-0 libsm6 libxrender-dev libxext6 \
|
|
&& apt-get clean \
|
|
&& rm -rf /var/lib/apt/lists/*
|
|
|
|
# Install MMCV
|
|
RUN pip install openmim
|
|
|
|
# Install MMClassification
|
|
RUN conda clean --all
|
|
RUN git clone -b pretrain https://github.com/open-mmlab/mmclassification.git mmpretrain
|
|
WORKDIR ./mmpretrain
|
|
RUN mim install --no-cache-dir -e .
|