mmpretrain/tests/test_models/test_backbones/test_efficientformer.py

200 lines
7.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from copy import deepcopy
from unittest import TestCase
import torch
from mmcv.cnn import ConvModule
from torch import nn
from mmpretrain.models.backbones import EfficientFormer
from mmpretrain.models.backbones.efficientformer import (AttentionWithBias,
Flat, Meta3D, Meta4D)
from mmpretrain.models.backbones.poolformer import Pooling
class TestEfficientFormer(TestCase):
def setUp(self):
self.cfg = dict(arch='l1', drop_path_rate=0.1)
self.arch = EfficientFormer.arch_settings['l1']
self.custom_arch = {
'layers': [1, 1, 1, 4],
'embed_dims': [48, 96, 224, 448],
'downsamples': [False, True, True, True],
'vit_num': 2,
}
self.custom_cfg = dict(arch=self.custom_arch)
def test_arch(self):
# Test invalid default arch
with self.assertRaisesRegex(AssertionError, 'Unavailable arch'):
cfg = deepcopy(self.cfg)
cfg['arch'] = 'unknown'
EfficientFormer(**cfg)
# Test invalid custom arch
with self.assertRaisesRegex(AssertionError, 'must have'):
cfg = deepcopy(self.custom_cfg)
cfg['arch'].pop('layers')
EfficientFormer(**cfg)
# Test vit_num < 0
with self.assertRaisesRegex(AssertionError, "'vit_num' must"):
cfg = deepcopy(self.custom_cfg)
cfg['arch']['vit_num'] = -1
EfficientFormer(**cfg)
# Test vit_num > last stage layers
with self.assertRaisesRegex(AssertionError, "'vit_num' must"):
cfg = deepcopy(self.custom_cfg)
cfg['arch']['vit_num'] = 10
EfficientFormer(**cfg)
# Test out_ind
with self.assertRaisesRegex(AssertionError, '"out_indices" must'):
cfg = deepcopy(self.custom_cfg)
cfg['out_indices'] = dict
EfficientFormer(**cfg)
# Test custom arch
cfg = deepcopy(self.custom_cfg)
model = EfficientFormer(**cfg)
self.assertEqual(len(model.patch_embed), 2)
layers = self.custom_arch['layers']
downsamples = self.custom_arch['downsamples']
vit_num = self.custom_arch['vit_num']
for i, stage in enumerate(model.network):
if downsamples[i]:
self.assertIsInstance(stage[0], ConvModule)
self.assertEqual(stage[0].conv.stride, (2, 2))
self.assertTrue(hasattr(stage[0].conv, 'bias'))
self.assertTrue(isinstance(stage[0].bn, nn.BatchNorm2d))
if i < len(model.network) - 1:
self.assertIsInstance(stage[-1], Meta4D)
self.assertIsInstance(stage[-1].token_mixer, Pooling)
self.assertEqual(len(stage) - downsamples[i], layers[i])
elif vit_num > 0:
self.assertIsInstance(stage[-1], Meta3D)
self.assertIsInstance(stage[-1].token_mixer, AttentionWithBias)
self.assertEqual(len(stage) - downsamples[i] - 1, layers[i])
flat_layer_idx = len(stage) - vit_num - downsamples[i]
self.assertIsInstance(stage[flat_layer_idx], Flat)
count = 0
for layer in stage:
if isinstance(layer, Meta3D):
count += 1
self.assertEqual(count, vit_num)
def test_init_weights(self):
# test weight init cfg
cfg = deepcopy(self.cfg)
cfg['init_cfg'] = [
dict(
type='Kaiming',
layer='Conv2d',
mode='fan_in',
nonlinearity='linear'),
dict(type='Constant', layer=['LayerScale'], val=1e-4)
]
model = EfficientFormer(**cfg)
ori_weight = model.patch_embed[0].conv.weight.clone().detach()
ori_ls_weight = model.network[0][-1].ls1.weight.clone().detach()
model.init_weights()
initialized_weight = model.patch_embed[0].conv.weight
initialized_ls_weight = model.network[0][-1].ls1.weight
self.assertFalse(torch.allclose(ori_weight, initialized_weight))
self.assertFalse(torch.allclose(ori_ls_weight, initialized_ls_weight))
def test_forward(self):
imgs = torch.randn(1, 3, 224, 224)
# test last stage output
cfg = deepcopy(self.cfg)
model = EfficientFormer(**cfg)
outs = model(imgs)
self.assertIsInstance(outs, tuple)
self.assertEqual(len(outs), 1)
feat = outs[-1]
self.assertEqual(feat.shape, (1, 448, 49))
assert hasattr(model, 'norm3')
assert isinstance(getattr(model, 'norm3'), nn.LayerNorm)
# test multiple output indices
cfg = deepcopy(self.cfg)
cfg['out_indices'] = (0, 1, 2, 3)
cfg['reshape_last_feat'] = True
model = EfficientFormer(**cfg)
outs = model(imgs)
self.assertIsInstance(outs, tuple)
self.assertEqual(len(outs), 4)
# Test out features shape
for dim, stride, out in zip(self.arch['embed_dims'], [1, 2, 4, 8],
outs):
self.assertEqual(out.shape, (1, dim, 56 // stride, 56 // stride))
# Test norm layer
for i in range(4):
assert hasattr(model, f'norm{i}')
stage_norm = getattr(model, f'norm{i}')
assert isinstance(stage_norm, nn.GroupNorm)
assert stage_norm.num_groups == 1
# Test vit_num == 0
cfg = deepcopy(self.custom_cfg)
cfg['arch']['vit_num'] = 0
cfg['out_indices'] = (0, 1, 2, 3)
model = EfficientFormer(**cfg)
for i in range(4):
assert hasattr(model, f'norm{i}')
stage_norm = getattr(model, f'norm{i}')
assert isinstance(stage_norm, nn.GroupNorm)
assert stage_norm.num_groups == 1
def test_structure(self):
# test drop_path_rate decay
cfg = deepcopy(self.cfg)
cfg['drop_path_rate'] = 0.2
model = EfficientFormer(**cfg)
layers = self.arch['layers']
for i, block in enumerate(model.network):
expect_prob = 0.2 / (sum(layers) - 1) * i
if hasattr(block, 'drop_path'):
if expect_prob == 0:
self.assertIsInstance(block.drop_path, torch.nn.Identity)
else:
self.assertAlmostEqual(block.drop_path.drop_prob,
expect_prob)
# test with first stage frozen.
cfg = deepcopy(self.cfg)
frozen_stages = 1
cfg['frozen_stages'] = frozen_stages
cfg['out_indices'] = (0, 1, 2, 3)
model = EfficientFormer(**cfg)
model.init_weights()
model.train()
# the patch_embed and first stage should not require grad.
self.assertFalse(model.patch_embed.training)
for param in model.patch_embed.parameters():
self.assertFalse(param.requires_grad)
for i in range(frozen_stages):
module = model.network[i]
for param in module.parameters():
self.assertFalse(param.requires_grad)
for param in model.norm0.parameters():
self.assertFalse(param.requires_grad)
# the second stage should require grad.
for i in range(frozen_stages + 1, 4):
module = model.network[i]
for param in module.parameters():
self.assertTrue(param.requires_grad)
if hasattr(model, f'norm{i}'):
norm = getattr(model, f'norm{i}')
for param in norm.parameters():
self.assertTrue(param.requires_grad)