151 lines
5.7 KiB
Python
151 lines
5.7 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import pytest
|
|
import torch
|
|
from torch.nn.modules import GroupNorm
|
|
from torch.nn.modules.batchnorm import _BatchNorm
|
|
|
|
from mmpretrain.models.backbones import EfficientNetV2
|
|
|
|
|
|
def is_norm(modules):
|
|
"""Check if is one of the norms."""
|
|
if isinstance(modules, (GroupNorm, _BatchNorm)):
|
|
return True
|
|
return False
|
|
|
|
|
|
def check_norm_state(modules, train_state):
|
|
"""Check if norm layer is in correct train state."""
|
|
for mod in modules:
|
|
if isinstance(mod, _BatchNorm):
|
|
if mod.training != train_state:
|
|
return False
|
|
return True
|
|
|
|
|
|
def test_efficientnet_v2_backbone():
|
|
with pytest.raises(TypeError):
|
|
# pretrained must be a string path
|
|
model = EfficientNetV2()
|
|
model.init_weights(pretrained=0)
|
|
|
|
with pytest.raises(AssertionError):
|
|
# arch must in arc_settings
|
|
EfficientNetV2(arch='others')
|
|
|
|
with pytest.raises(ValueError):
|
|
# frozen_stages must less than 8
|
|
EfficientNetV2(arch='b1', frozen_stages=12)
|
|
|
|
# Test EfficientNetV2
|
|
model = EfficientNetV2()
|
|
model.init_weights()
|
|
model.train()
|
|
x = torch.rand((1, 3, 224, 224))
|
|
model(x)
|
|
|
|
# Test EfficientNetV2 with first stage frozen
|
|
frozen_stages = 7
|
|
model = EfficientNetV2(arch='b0', frozen_stages=frozen_stages)
|
|
model.init_weights()
|
|
model.train()
|
|
for i in range(frozen_stages):
|
|
layer = model.layers[i]
|
|
for mod in layer.modules():
|
|
if isinstance(mod, _BatchNorm):
|
|
assert mod.training is False
|
|
for param in layer.parameters():
|
|
assert param.requires_grad is False
|
|
|
|
# Test EfficientNetV2 with norm eval
|
|
model = EfficientNetV2(norm_eval=True)
|
|
model.init_weights()
|
|
model.train()
|
|
assert check_norm_state(model.modules(), False)
|
|
|
|
# Test EfficientNetV2 forward with 'b0' arch
|
|
out_channels = [32, 16, 32, 48, 96, 112, 192, 1280]
|
|
model = EfficientNetV2(arch='b0', out_indices=(0, 1, 2, 3, 4, 5, 6, 7))
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
assert len(feat) == 8
|
|
assert feat[0].shape == torch.Size([1, out_channels[0], 112, 112])
|
|
assert feat[1].shape == torch.Size([1, out_channels[1], 112, 112])
|
|
assert feat[2].shape == torch.Size([1, out_channels[2], 56, 56])
|
|
assert feat[3].shape == torch.Size([1, out_channels[3], 28, 28])
|
|
assert feat[4].shape == torch.Size([1, out_channels[4], 14, 14])
|
|
assert feat[5].shape == torch.Size([1, out_channels[5], 14, 14])
|
|
assert feat[6].shape == torch.Size([1, out_channels[6], 7, 7])
|
|
assert feat[6].shape == torch.Size([1, out_channels[6], 7, 7])
|
|
|
|
# Test EfficientNetV2 forward with 'b0' arch and GroupNorm
|
|
out_channels = [32, 16, 32, 48, 96, 112, 192, 1280]
|
|
model = EfficientNetV2(
|
|
arch='b0',
|
|
out_indices=(0, 1, 2, 3, 4, 5, 6, 7),
|
|
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True))
|
|
for m in model.modules():
|
|
if is_norm(m):
|
|
assert isinstance(m, GroupNorm)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 64, 64)
|
|
feat = model(imgs)
|
|
assert len(feat) == 8
|
|
assert feat[0].shape == torch.Size([1, out_channels[0], 32, 32])
|
|
assert feat[1].shape == torch.Size([1, out_channels[1], 32, 32])
|
|
assert feat[2].shape == torch.Size([1, out_channels[2], 16, 16])
|
|
assert feat[3].shape == torch.Size([1, out_channels[3], 8, 8])
|
|
assert feat[4].shape == torch.Size([1, out_channels[4], 4, 4])
|
|
assert feat[5].shape == torch.Size([1, out_channels[5], 4, 4])
|
|
assert feat[6].shape == torch.Size([1, out_channels[6], 2, 2])
|
|
assert feat[7].shape == torch.Size([1, out_channels[7], 2, 2])
|
|
|
|
# Test EfficientNetV2 forward with 'm' arch
|
|
out_channels = [24, 24, 48, 80, 160, 176, 304, 512, 1280]
|
|
model = EfficientNetV2(arch='m', out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8))
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 64, 64)
|
|
feat = model(imgs)
|
|
assert len(feat) == 9
|
|
assert feat[0].shape == torch.Size([1, out_channels[0], 32, 32])
|
|
assert feat[1].shape == torch.Size([1, out_channels[1], 32, 32])
|
|
assert feat[2].shape == torch.Size([1, out_channels[2], 16, 16])
|
|
assert feat[3].shape == torch.Size([1, out_channels[3], 8, 8])
|
|
assert feat[4].shape == torch.Size([1, out_channels[4], 4, 4])
|
|
assert feat[5].shape == torch.Size([1, out_channels[5], 4, 4])
|
|
assert feat[6].shape == torch.Size([1, out_channels[6], 2, 2])
|
|
assert feat[7].shape == torch.Size([1, out_channels[7], 2, 2])
|
|
assert feat[8].shape == torch.Size([1, out_channels[8], 2, 2])
|
|
|
|
# Test EfficientNetV2 forward with 'm' arch and GroupNorm
|
|
out_channels = [24, 24, 48, 80, 160, 176, 304, 512, 1280]
|
|
model = EfficientNetV2(
|
|
arch='m',
|
|
out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8),
|
|
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True))
|
|
for m in model.modules():
|
|
if is_norm(m):
|
|
assert isinstance(m, GroupNorm)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 64, 64)
|
|
feat = model(imgs)
|
|
assert len(feat) == 9
|
|
assert feat[0].shape == torch.Size([1, out_channels[0], 32, 32])
|
|
assert feat[1].shape == torch.Size([1, out_channels[1], 32, 32])
|
|
assert feat[2].shape == torch.Size([1, out_channels[2], 16, 16])
|
|
assert feat[3].shape == torch.Size([1, out_channels[3], 8, 8])
|
|
assert feat[4].shape == torch.Size([1, out_channels[4], 4, 4])
|
|
assert feat[5].shape == torch.Size([1, out_channels[5], 4, 4])
|
|
assert feat[6].shape == torch.Size([1, out_channels[6], 2, 2])
|
|
assert feat[7].shape == torch.Size([1, out_channels[7], 2, 2])
|
|
assert feat[8].shape == torch.Size([1, out_channels[8], 2, 2])
|